
'

&

$

%

First-order logic

Chapter 7, AIMA2e Chapter 8

1

'

&

$

%

Outline

♦ Why FOL?

♦ Syntax and semantics of FOL

♦ Fun with sentences

♦ Wumpus world in FOL

2

'

&

$

%

Pros and cons of propositional logic

Propositional logic isdeclarative: pieces of syntax correspond to facts

Propositional logic allows partial/disjunctive/negated information

(unlike most data structures and databases)

Propositional logic iscompositional:

meaning ofB1,1 ∧ P1,2 is derived from meaning ofB1,1 and ofP1,2

Meaning in propositional logic iscontext-independent

(unlike natural language, where meaning depends on context)

Propositional logic has very limited expressive power

(unlike natural language)

E.g., cannot say “pits cause breezes in adjacent squares”

except by writing one sentence for each square

3

'

&

$

%

First-order logic

Whereas propositional logic assumes world containsfacts,

first-order logic (like natural language) assumes the world contains

• Objects: people, houses, numbers, theories, Ronald McDonald,

colors, baseball games, wars, centuries. . .

• Relations: red, round, bogus, prime, multistoried. . .,

brother of, bigger than, inside, part of, has color, occurred after,

owns, comes between,. . .

• Functions: father of, best friend, third inning of, one more than,

beginning of. . .

4

'

&

$

%

Logics in general

Language Ontological Commitment Epistemological Commitment

Propositional logic facts true/false/unknown

First-order logic facts, objects, relations true/false/unknown

Temporal logic facts, objects, relations, times true/false/unknown

Probability theory facts degree of belief∈ [0, 1]

Fuzzy logic degree of truth∈ [0, 1] known interval value

5

'

&

$

%

Syntax of FOL: Basic elements

Constants KingJohn, 2, UCB, . . .

Predicates Brother, >, . . .

Functions Sqrt, LeftLegOf, . . .

Variables x, y, a, b, . . .

Connectives ∧ ∨ ¬ ⇒ ⇔
Equality =

Quantifiers ∀ ∃

6

'

&

$

%

Atomic sentences

Atomic sentence = predicate(term1, . . . , termn)

or term1 = term2

Term = function(term1, . . . , termn)

or constant or variable

E.g., Brother(KingJohn, RichardTheLionheart)

> (Length(LeftLegOf(Richard)),

Length(LeftLegOf(KingJohn)))

7

'

&

$

%

Complex sentences

Complex sentences are made from atomic sentences using connectives

¬S, S1 ∧ S2, S1 ∨ S2, S1⇒ S2, S1 ⇔ S2

E.g. Sibling(KingJohn, Richard)⇒ Sibling(Richard, KingJohn)

>(1, 2) ∨ ≤(1, 2)

>(1, 2) ∧ ¬>(1, 2)

8

'

&

$

%

Truth in first-order logic

Sentences are true with respect to amodeland aninterpretation

Model contains≥ 1 objects (domain elements) and relations among them

Interpretation specifies referents for

constant symbols→ objects

predicate symbols→ relations

function symbols→ functional relations

An atomic sentencepredicate(term1, . . . , termn) is true

iff the objectsreferred to byterm1, . . . , termn

are in therelationreferred to bypredicate

9

'

&

$

%

Models for FOL: Example

R J$

left leg left leg

on head
brother

brother

person
person
king

crown

10

'

&

$

%

Models for FOL: Lots!

Wecanenumerate the models for a given KB vocabulary:

For each number of domain elementsn from 1 to∞
For eachk-ary predicatePk in the vocabulary

For each possiblek-ary relation onn objects

For each constant symbolC in the vocabulary

For each choice of referent forC from n objects. . .

Computing entailment by enumerating models is not going to be easy!

11

'

&

$

%

Universal quantification

∀ < variables > < sentence >

Everyone at GMU is smart:

∀x At(x, GMU)⇒ Smart(x)

∀x P is true in a modelm iff P is true withx being

each possible object in the model

Roughly speaking, equivalent to theconjunctionof instantiationsof P

At(KingJohn, GMU)⇒ Smart(KingJohn)

∧ At(Richard, GMU)⇒ Smart(Richard)

∧ At(Mason, GMU)⇒ Smart(Mason)

∧ . . .

12

'

&

$

%

A common mistake to avoid

Typically, ⇒ is the main connective with∀
Common mistake: using∧ as the main connective with∀:

∀x At(x, GMU) ∧ Smart(x)

means “Everyone is at GMU and everyone is smart”

13

'

&

$

%

Existential quantification

∃ < variables > < sentence >

Someone at Madison is smart:

∃x At(x, Madison) ∧ Smart(x)

∃x P is true in a modelm iff P is true withx being

somepossible object in the model

Roughly speaking, equivalent to thedisjunctionof instantiationsof P

At(KingJohn, Madison) ∧ Smart(KingJohn)

∨ At(Richard, Madison) ∧ Smart(Richard)

∨ At(Madison, Madison) ∧ Smart(Madison)

∨ . . .

14

'

&

$

%

Another common mistake to avoid

Typically,∧ is the main connective with∃
Common mistake: using⇒ as the main connective with∃:

∃x At(x, Madison)⇒ Smart(x)

is true if there is anyone who is not at Madison!

15

'

&

$

%

Properties of quantifiers

∀x ∀ y is the same as∀ y ∀x (why??)

∃x ∃ y is the same as∃ y ∃x (why??)

∃x ∀ y is not the same as∀ y ∃x

∃x ∀ y Loves(x, y)
“There is a person who loves everyone in the world”

∀ y ∃x Loves(x, y)
“Everyone in the world is loved by at least one person”

Quantifier duality: each can be expressed using the other

∀x Likes(x, IceCream) ¬∃x ¬Likes(x, IceCream)

∃x Likes(x, Broccoli) ¬∀x ¬Likes(x, Broccoli)

16

'

&

$

%

Fun with sentences

Brothers are siblings

17

'

&

$

%

Fun with sentences

Brothers are siblings

∀x, y Brother(x, y)⇒ Sibling(x, y).

“Sibling” is symmetric

18

'

&

$

%

Fun with sentences

Brothers are siblings

∀x, y Brother(x, y)⇒ Sibling(x, y).

“Sibling” is symmetric

∀x, y Sibling(x, y)⇔ Sibling(y, x).

One’s mother is one’s female parent

19

'

&

$

%

Fun with sentences

Brothers are siblings

∀x, y Brother(x, y)⇒ Sibling(x, y).

“Sibling” is symmetric

∀x, y Sibling(x, y)⇔ Sibling(y, x).

One’s mother is one’s female parent

∀x, y Mother(x, y)⇔ (Female(x) ∧ Parent(x, y)).

A first cousin is a child of a parent’s sibling

20

'

&

$

%

Fun with sentences

Brothers are siblings

∀x, y Brother(x, y)⇒ Sibling(x, y).

“Sibling” is symmetric

∀x, y Sibling(x, y)⇔ Sibling(y, x).

One’s mother is one’s female parent

∀x, y Mother(x, y)⇔ (Female(x) ∧ Parent(x, y)).

A first cousin is a child of a parent’s sibling

∀x, y F irstCousin(x, y)⇔
∃ p, ps Parent(p, x) ∧ Sibling(ps, p) ∧ Parent(ps, y)

21

'

&

$

%

Equality

term1 = term2 is true under a given interpretation

if and only if term1 andterm2 refer to the same object

E.g., 1 = 2 and∀x ×(Sqrt(x), Sqrt(x)) = x are satisfiable

2 = 2 is valid

E.g., definition of (full)Sibling in terms ofParent:

∀x, y Sibling(x, y)⇔ [¬(x= y) ∧ ∃m, f ¬(m = f) ∧
Parent(m, x) ∧ Parent(f, x) ∧ Parent(m, y) ∧ Parent(f, y)]

22

'

&

$

%

Interacting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB

and perceives a smell and a breeze (but no glitter) att = 5:

Tell(KB, Percept([Smell, Breeze, None], 5))
Ask(KB, ∃ a Action(a, 5))

I.e., does the KB entail any particular actions att = 5?

Answer:Y es, {a/Shoot} ← substitution(binding list)

Given a sentenceS and a substitutionσ,

Sσ denotes the result of pluggingσ into S; e.g.,
S = Smarter(x, y)
σ = {x/Hillary, y/Bill}
Sσ = Smarter(Hillary, Bill)

Ask(KB, S) returns some/allσ such thatKB |= Sσ

23

'

&

$

%

Knowledge base for the wumpus world

“Perception”

∀ b, g, t Percept([Smell, b, g], t)⇒ Smelt(t)
∀ s, b, t Percept([s, b, Glitter], t)⇒ AtGold(t)

Reflex: ∀ t AtGold(t)⇒ Action(Grab, t)

Reflex with internal state: do we have the gold already?

∀ t AtGold(t) ∧ ¬Holding(Gold, t)⇒Action(Grab, t)

Holding(Gold, t) cannot be observed

⇒ keeping track of change is essential

24

'

&

$

%

Deducing hidden properties

Properties of locations:

∀x, t At(Agent, x, t) ∧ Smelt(t)⇒ Smelly(x)
∀x, t At(Agent, x, t) ∧Breeze(t)⇒Breezy(x)

Squares are breezy near a pit:

Diagnosticrule—infer cause from effect

∀ y Breezy(y)⇒∃x Pit(x) ∧Adjacent(x, y)

Causalrule—infer effect from cause

∀x, y P it(x) ∧Adjacent(x, y)⇒Breezy(y)

Neither of these is complete—e.g., the causal rule doesn’t say whether

squares far away from pits can be breezy

Definition for theBreezy predicate:

∀ y Breezy(y)⇔ [∃x Pit(x) ∧Adjacent(x, y)]

25

'

&

$

%

Keeping track of change

Facts hold insituations, rather than eternally
E.g.,Holding(Gold, Now) rather than justHolding(Gold)

Situation calculusis one way to represent change in FOL:
Adds a situation argument to each non-eternal predicate
E.g.,Now in Holding(Gold, Now) denotes a situation

Situations are connected by theResult function
Result(a, s) is the situation that results from doinga in s

PIT

PIT

PIT

Gold

PIT

PIT

PIT

Gold

S0

Forward

S1

26

'

&

$

%

Describing actions I

“Effect” axiom—describe changes due to action

∀ s AtGold(s)⇒Holding(Gold, Result(Grab, s))

“Frame” axiom—describenon-changesdue to action

∀ s HaveArrow(s)⇒HaveArrow(Result(Grab, s))

Frame problem: find an elegant way to handle non-change

(a) representation—avoid frame axioms

(b) inference—avoid repeated “copy-overs” to keep track of state

Qualification problem: true descriptions of real actions require endless

caveats—what if gold is slippery or nailed down or. . .

Ramification problem: real actions have many secondary

consequences—what about the dust on the gold, wear and tear on gloves,

. . .

27

'

&

$

%

Describing actions II

Successor-state axiomssolve the representational frame problem

Each axiom is “about” apredicate(not an action per se):

P true afterwards⇔ [an action made P true

∨ P true already and no action made P false]

For holding the gold:

∀ a, s Holding(Gold, Result(a, s))⇔
[(a =Grab ∧AtGold(s))
∨ (Holding(Gold, s) ∧ a 6= Release)]

28

'

&

$

%

Making plans

Initial condition in KB:

At(Agent, [1, 1], S0)
At(Gold, [1, 2], S0)

Query:Ask(KB, ∃ s Holding(Gold, s))
i.e., in what situation will I be holding the gold?

Answer:{s/Result(Grab, Result(Forward, S0))}
i.e., go forward and then grab the gold

This assumes that the agent is interested in plans starting atS0 and thatS0

is the only situation described in the KB

29

'

&

$

%

Making plans: A better way

Representplansas action sequences[a1, a2, . . . , an]

P lanResult(p, s) is the result of executingp in s

Then the queryAsk(KB, ∃ p Holding(Gold, P lanResult(p, S0)))
has the solution{p/[Forward, Grab]}
Definition ofP lanResult in terms ofResult:

∀ s P lanResult([], s) = s

∀ a, p, s P lanResult([a|p], s) = P lanResult(p, Result(a, s))

Planning systemsare special-purpose reasoners designed to do this type

of inference more efficiently than a general-purpose reasoner

30

'

&

$

%

Summary

First-order logic:

– objects and relations are semantic primitives

– syntax: constants, functions, predicates, equality, quantifiers

Increased expressive power: sufficient to define wumpus world

Situation calculus:

– conventions for describing actions and change in FOL

– can formulate planning as inference on a situation calculus KB

31

