Inference in first-order logic I
‘ Chapter 9, Chapter 10 Sections 2—-3, AIMA2e Chapter i

-

\Outline I

> Reducing first-order inference to propositional inference
&> Unification

{> Generalized Modus Ponens

> Forward and backward chaining

¢ Logic programming

> Resolution

-

‘A brief history of reasoning I

4508.c. Stoics propositional logic, inference (maybe)

3228.c. Aristotle “syllogisms” (inference rules), quantifiers

1565 Cardano probability theory (propositional logic + uncertairjty)
1847 Boole propositional logic (again)

1879 Frege first-order logic

1922 Wittgenstein proof by truth tables

1930 Gdel 4 complete algorithm for FOL

1930 Herbrand complete algorithm for FOL (reduce to propositignal)
1931 Gdel -3 complete algorithm for arithmetic

1960 Davis/Putnam “practical” algorithm for propositional logic

1965 Robinson “practical” algorithm for FOL—resolution

_ /

/ ‘ Universal instantiation (Ul) I \

Every instantiation of a universally quantified sentence is entailed by it}

Vv «
SuBsT({v/g}, a)
for any variablev and ground terng

E.g..Va King(x) A Greedy(z) = FEvil(x) yields

King(John) A Greedy(John) = Evil(John)
King(Richard) A Greedy(Richard) = Evil(Richard)
King(Father(John)) A Greedy(Father(John))

= Evil(Father(John))

\: p

/ ‘ Existential instantiation (EI) I \

For any sentence, variablev, and constant symbai
that does not appear elsewhere in the knowledge:base

Jv «

SuBsST({v/k},)

E.g..3x Crown(x) A OnHead(x, John) yields
Crown(Cy) N OnHead(Cy, John)

provided(’; is a new constant symbol, calleds&olem constant

Another example: fromz d(zY)/dy = x¥ we obtain

d(e¥)/dy=e?

\providede IS a new constant symbol /

5

Existential instantiation contd. I

Ul can be applied several timesaddnew sentences;
the new KB is logically equivalent to the old

El can be applied once teplacethe existential sentence;
the new KB isnot equivalent to the old,
but is satisfiable iff the old KB was satisfiable

-

/ Reduction to propositional inferenc

Suppose the KB contains just the following:
Vo King(x) A Greedy(z) = Evil(x)

King(John)
Greedy(John)
Brother(Richard, John)

Instantiating the universal sentencealhpossibleways, we have
King(John) A Greedy(John) = Evil(John)

King(Richard) A Greedy(Richard) = Evil(Richard)
King(John)

Greedy(John)

Brother(Richard, John)

The new KB ispropositionalizedproposition symbols are

~

King(John), Greedy(John), Evil(John), King(Richard) etc. /

v

/ Reduction contd.. \

Claim: a ground sententes entailed by new KB iff entailed by original KB
Claim: every FOL KB can be propositionalized so as to preserve entailm
|dea: propositionalize KB and query, apply resolution, return result

Problem: with function symbols, there are infinitely many ground terms,
e.g.,Father(Father(Father(John)))

Theorem: Herbrand (1930). If a sentences entailed by an FOL KB,
it is entailed by dinite subset of the propositional KB

ldea: Forn = 0tooo do

create a propositional KB by instantiating with depitblerms
see ifa Is entailed by this KB

Problem: works il is entailed, loops ifv is not entailed

Theorem: Turing (1936), Church (1936), entailment in FOL is

Qemidecidable /

ent

-

E.g., from

-

Problems with propositionalization I

Vo King(x) A Greedy(z) = Evil(x)
King(John)

Vy Greedy(y)

Brother(Richard, John)

With p k-ary predicates and constants, there age- n* instantiations!

~

Propositionalization seems to generate lots of irrelevant sentences.

it seems obvious thatvil(John), but propositionalization produces lotg
of facts such a&reedy(Richard) that are irrelevant

/

-

p

Unification '

We can get the inference immediately if we can find a substitétion
such thatK'ing(x) andGreedy(x) matchKing(John) andGreedy(y)

0 = {x/John,y/John} works
UNIFY (a, B) = 0 if o =36

q

~

Knows(John, x

)
Knows(John, x)
Knows)

)

(
(
(John, x
(

Knows(John, x

-

Knows(John, Jane)
Knows(y,OJ)

(y, Mother(y))
(

Knows(z,0J)

10

-

Unification '

We can get the inference immediately if we can find a substitétion
such thatK'ing(x) andGreedy(x) matchKing(John) andGreedy(y)

0 = {x/John,y/John} works
UNIFY (a, B) = 0 if o =36

~

-

p q 0
Knows(John,z) | Knows(John, Jane) {z/Jane}
Knows(John,x) | Knows(y,OJ)

Knows(John,x) | Knows(y, Mother(y))
Knows(John,z) | Knows(x,OJ)

11

-

p

Unification '

q

We can get the inference immediately if we can find a substitétion
such thatK'ing(x) andGreedy(x) matchKing(John) andGreedy(y)

0 = {x/John,y/John} works
UNIFY (a, B) = 0 if o =36

0

~

Knows(John, x

)
Knows(John, x)
Knows)

)

(
(
(John, x
(

Knows(John, x

-

Knows(John, Jane)
Knows(y,OJ)

(y, Mother(y))
(

Knows(z,0J)

{z/Jane}
{x/OJ,y/John}

12

4 N
Unification '

We can get the inference immediately if we can find a substitétion
such thatK'ing(x) andGreedy(x) matchKing(John) andGreedy(y)

0 = {x/John,y/John} works
UNIFY (a, B) = 0 if o =36

p q 0

Knows(John,z) | Knows(John, Jane) {z/Jane}

Knows(John,x) | Knows(y,OJ) {x/OJ,y/John}
Knows(John,x) | Knows(y, Mother(y)) | {y/John,x/Mother(John)}
Knows(John,z) | Knows(x,OJ)

_ /

13

-

0 = {x/John,y/John} works
UNIFY (a, B) = 0 if af =6

p q

Unification '

We can get the inference immediately if we can find a substitétion
such thatKing(z) andGreedy(x) matchKing(John) andGreedy(y)

0

~

Knows(John, x

Knows(John, x

() (
Knows(John,z) | Knows(y,OJ)
() (

() (

Knows(John,z) | Knows(x,OJ)

\Knows(zn, 0J)

Knows(John, Jane)

Knows(y, Mother(y))

{z/Jane}
{x/OJ,y/John}

{y/John,x/Mother(John)}

faul

Standardizing apa#dliminates overlap of variables, e.g.,

/

14

‘ Generalized Modus Ponens (GI\/IPI

/7 /7 L /7 /\ /\ e o /\ :>
b, P I <p; b2 Pn = 4) wherep,’0 = p,0 for all ¢
q
p1’is King(John) p1 is King(x)
po’ is Greedy(y) p2 IS Greedy(x)

0is{x/John,y/John} qis FEvil(x)
q0 is Fvil(John)

GMP used with KB ofdefinite clausegexactlyone positive literal)
All variables assumed universally quantified

_ /

15

4 I
Soundness of GMH

Need to show that

Py ooy pns (PIA .. AP, =q) = qb
provided that,’0 = p;0 for all
Lemma: For any definite clauge we havep = pf by Ul
1.(p1 Ao Apn=q E (P1A...Apn=q)0=(p1O0A...\p,0 = qb)
2.0, ..., o EpUAN o AD EplON .. AD,O

3. From 1 and 246 follows by ordinary Modus Ponens

_ /

16

‘ Example knowledge basj

The law says that it is a crime for an American to sell weapons to hostile
nations. The country Nono, an enemy of America, has some missiles, [and
all of its missiles were sold to it by Colonel West, who is American.

Prove that Col. West is a criminal

_ /

17

‘ Example knowledge base contﬂ

... Itis a crime for an American to sell weapons to hostile nations:

18

‘ Example knowledge base contﬂ

... Itis a crime for an American to sell weapons to hostile nations:
American(x) N Weapon(y) A Sells(x,y, z) A

Hostile(z) = Criminal(x)

Nono. .. has some missiles

-

19

‘ Example knowledge base contﬂ

... Itis a crime for an American to sell weapons to hostile nations:
American(x) N Weapon(y) A Sells(x,y, z) A

Hostile(z) = Criminal(x)

Nono. .. has some missiles, i.elx Owns(Nono,x) N Missile(x):
Owns(Nono, My) andMissile(M)

... all of its missiles were sold to it by Colonel West

-

20

-

‘ Example knowledge base contﬂ

... Itis a crime for an American to sell weapons to hostile nations:
American(x) N Weapon(y) A Sells(x,y, z) A

Hostile(z) = Criminal(x)

Nono. .. has some missiles, i.elx Owns(Nono,x) N Missile(x):
Owns(Nono, M) andMissile(M)

... all of its missiles were sold to it by Colonel West
Vax Missile(x) AN Owns(Nono,x) = Sells(West, x, Nono)

Missiles are weapons:

-

21

-

‘ Example knowledge base contﬂ

... Itis a crime for an American to sell weapons to hostile nations:
American(x) N Weapon(y) A Sells(x,y, z) A

Hostile(z) = Criminal(x)

Nono. .. has some missiles, i.elx Owns(Nono,x) N Missile(x):
Owns(Nono, My) andMissile(M)

... all of its missiles were sold to it by Colonel West
Vax Missile(x) AN Owns(Nono,xz) = Sells(West, x, Nono)

Missiles are weapons:
Missile(x) = Weapon(x)

An enemy of America counts as “hostile™:

-

22

/ ‘ Example knowledge base contﬂ \

... Itis a crime for an American to sell weapons to hostile nations:
American(x) N Weapon(y) A Sells(x,y, z) A
Hostile(z) = Criminal(x)
Nono. .. has some missiles, i.elx Owns(Nono, x) AN Missile(x):
Owns(Nono, My) andMissile(M)
... all of its missiles were sold to it by Colonel West
Vax Missile(x) AN Owns(Nono,xz) = Sells(West, x, Nono)
Missiles are weapons:
Missile(x) = Weapon(x)
An enemy of America counts as “hostile™:
Enemy(x, America) = Hostile(x)
West, who is American. .
American(W est)
The country Nono, an enemy of America

\ Enemy(Nono, America) /

23

4 N

Forward chaining algorithm I

function FOL-FC-Ask(KB, «) returns a substitution ofalse

repeat until newis empty
new«— ()
for each sentence in KB do
(py A... N\ pn = q) <« STANDARDIZE-APART(r)
foreach® suchthatps A ... A pn)0 = (p] A ... A p;,)0
for somep1, ..., p,, in KB
q’ <+ SUBST(H, q)
if ¢’ is not a renaming of a sentence alreadiKBior newthen do
addq’ to new
¢ «— UNIFY (¢, @)
if ¢ is notfail then return ¢
addnewto KB
return false

24

‘ Forward chaining proof I

American(West Missile(M1) Owns(Nono,M1] Enemy(Nono,America[)

_ /

25

‘ Forward chaining proof I

Weapon(M1) Sells(West,M1,Nono] Hostile(Nono)

American(West] Missile(M1) Owns(Nono,M1] Enemy(Nono,America[)

_ /

26

‘ Forward chaining proof I

Criminal(West)

Weapon(M1) Sells(West,M1,Nono] Hostile(Nono)

American(West] Missile(M1) Owns(Nono,M1] Enemy(Nono,America[)

_ /

27

-

‘ Properties of forward chaining I

Sound and complete for first-order definite clauses
(proof similar to propositional proof)

Datalog= first-order definite clausesro functionge.g., crime KB)
FC terminates for Datalog in poly iterations: at mpst:* literals

May not terminate in general if is not entailed

This is unavoidable: entailment with definite clauses is semidecidable

/

28

-

-

Efficiency of forward chaining I

Simple observation: no need to match a rule on iteration
If a premise wasn’t added on iteratién- 1
= match each rule whose premise contains a newly added litg

Matching itself can be expensive

Database indexingllows O(1) retrieval of known facts

e.g., queryMissile(x) retrievesMissile(M)

Matching conjunctive premises against known facts is NP-hard

Forward chaining is widely used oeductive databases

/

29

ral

Hard matching example'

Diff (wa, nt) A Diff(wa, sa) A
Diff (nt, q)Diff(nt, sa) A

@ Diff(q, nsw) A Diff(q, sa) A
@"‘e Diff(nsw, v) A Diff(nsw, sa) A
Diff (v, sa) = Colorable()

L=
O Diff (Red, Blue) Diff(Red, Green)

@ Diff(Green, Red) Diff(Green, Blue)
Diff(Blue, Red) Diff(Blue, Green)

Colorable() is inferred iff the CSP has a solution
CSPs include 3SAT as a special case, hence matching is NP-hard

_ /

30

-

Backward chaining algorithm I

function FOL-BC-Ask(KB, goalsp) returns a set of substitutions
inputs: KB, a knowledge base
goals a list of conjuncts forming a query
6, the current substitution, initially the empty substitutibn
local variables ans a set of substitutions, initially empty

if goalsis emptythen return {6}
q' <+ SuBsT(0, FIRST(goalg)
for eachr in KB where SANDARDIZE-APART(I)=(p1 A ... A pn = q)
andé’ < UNIFY(q, ¢’) succeeds
ans«— FOL-BC-Ask(KB, [p1, ..., pn|REST(goalg], ComPOSH®’, 0)) U ans
return ans

31

‘ Backward chaining example'

Criminal(West)

32

‘ Backward chaining example'

Criminal(West)

American(x)

Weapon(y)

Sells(x,y,z)

{x/West}

Hostile(z)

33

‘ Backward chaining example'

Criminal(West)

American(West]

Weapon(y)

U}

Sells(x,y,z)

{x/West}

Hostile(z)

34

‘ Backward chaining example'

Criminal(West)

American(West]

Weapon(y)

U}

Missile(y)

Sells(x,y,z)

{x/West}

Hostile(z)

35

‘ Backward chaining example'

Criminal(West)

American(West] Weapon(y)
{}
Missile(y)
{ yiM1

Sells(x,y,z)

{x/West, y/M1}

Hostile(z)

36

‘ Backward chaining example'

Criminal(West) {x/West, y/M1, z/Nono}
American(West] Weapon(y) Sells(West,M1,2) Hostile(z)
{} { z/Nong

Missile(y) | [Missile(M1) | | Owns(Nono,M1)
{ ymM3

37

‘ Backward chaining example'

{x/West, y/M1, z/Nono}

Criminal(West)

American(West] Weapon(y) Sells(West,M1,2) Hostile(Nono)
{} { z/Nong
Missile(y) | [Missile(M1) | | Owns(Nono,M1) Enemy(Nono,America[)
{ ymz {} {} {}

/

38

Properties of backward chaining'

Depth-first recursive proof search: space is linear in size of proof

Incomplete due to infinite loops
= fix by checking current goal against every goal on stack

Inefficient due to repeated subgoals (both success and failure)
= fix using caching of previous results (extra space!)

Widely used (without improvements!) fémgic programming

-

39

-

‘ Logic programming I

Sound bite: computation as inference on logical KBs

Logic programming Ordinary programming
1. Identify problem |dentify problem
2. Assemble information Assemble information
3. Teabreak Figure out solution
4. Encode information in KB Program solution
5. Encode problem instance as facts Encode problem instance a
6. Ask queries Apply program to data
7. Find false facts Debug procedural errors

Should be easier to debdgpital(NewY ork,US) thanx := z + 2!

S data

/

40

-

‘ Prolog systemi

Basis: backward chaining with Horn clauses + bells & whistles
Widely used in Europe, Japan (basis of 5th Generation project)
Compilation techniques; 60 million LIPS

Program = set of clauseshead :- literal 1, ... literal

criminal(X) :- american(X),weapon(Y),sells(X,Y,Z),hostile(Z).

Efficient unification byopen coding
Efficient retrieval of matching clauses by direct linking
Depth-first, left-to-right backward chaining
Built-in predicates for arithmetic etc., e.¢X, is Y*Z+3
Closed-world assumption (“negation as failure”)
e.g., givenalive(X) :- not dead(X).
\ alive(joe) succeeds iflead(joe) fails

nl

~

41

/ Prolog examplej \

Depth-first search from a start stafe

dfs(X) :- goal(X).
dfs(X) :- successor(X,S),dfs(S).

No need to loop oveb: successor succeeds for each

Appending two lists to produce a third:

append([],Y,Y).
append([X|L],Y,[X]Z]) :- append(L,Y,Z).

query: append(A,B,[1,2]) ?
answers: A=[] B=[1,2]
A=[1] B=[2]

\ A=[1,2] B=[] /

42

Resolution: brief summary'

Full first-order version:

€1V"'V€k, mi V- Vmny
61\/---\/Ei_1V€¢+1\/---\/€k\/m1\/---\/m~_1\/m~+1\/---\/mn 0
J J

where WNIFY (4;, —m,;) =0.
For example,
—Rich(x) V Unhappy(x)
Rich(Ken)
Unhappy(Ken)

with § = {x/Ken}
Apply resolution steps t&’' N F(K B A —«); complete for FOL

_ /

43

-

Conversion to CNFI

Everyone who loves all animals is loved by someone:
Ve [Vy Animal(y) = Loves(x,y)| = [y Loves(y,x)]

1. Eliminate biconditionals and implications
Ve [=Vy —Animal(y) V Loves(x,y)| V [dy Loves(y,x)]
2. Move—- inwards:—Vx,p =dz —-p, —-dz,p =Vax —p:

Vo [dy =(mAnimal(y) V Loves(x,y))| V [y Loves(y,)]
Vo [dy =—Animal(y) N ~Loves(x,y)| V [y Loves(y,x)]

Va [y Animal(y) N ~Loves(x,y)| V [y Loves(y,x)]

-

44

/ Conversion to CNF contd.. \

3. Standardize variables: each quantifier should use a different one
Vo 3y Animal(y) N ~Loves(x,y)| V [z Loves(z,x)]

4. Skolemize: a more general form of existential instantiation.
Each existential variable is replaced b$kolem function
of the enclosing universally quantified variables:

Va [Animal(F(x)) A =Loves(x, F'(x))] V Loves(G(x), x)
5. Drop universal quantifiers:
[Animal(F(x)) A —=Loves(x, F(x))| V Loves(G(x), x)

6. Distributen overV:

[Animal(F(x))V Loves(G(x), z)|A|[~Loves(x, F'(x))VLoves(G(x),)]

/

45

Resolution proof: definite clause

=1 American(x v —"Weapon(y v —1Sells(x,y,zZ v —1Hostile(z) v Criminal(x) =1 Criminal(West)
American(West) -1 American(Wesi v " Weapon(y v - Sells(West,y,z v —1Hostile(z)
-1 Missile(x) v Weapon(x 1 Weapon(y v -1 Sells(West,y,z v —1Hostile(z)
Missile(M1) -1 Missile(y) v Sells(West,y,z v —1Hostile(z)
=1 Missile(x) v =1Owns(Nono,x v Sells(West,x,Nono -1 Sells(West,M1,z) v -1 Hostile(z)
Missile(M1) -1 Missile(M1) v - Owns(N/ono,Ml) v —1Hostile(Nono)
Owns(Nono,M1) - Owns(Nono,Ml)v/ﬂ Hostile(Nono)
-1 Enemy(x,America v Hostile(x) -1 Hostile(Nono)
Enemy(Nono,America Enemy(Nono,America

| e

46

