
Cycles in an Undirected Graph 
 
1. Determine if an undirected graph G = (V, E) is connected, where |V| = n and |E| = m. 
 
2. Find all the cycles in an undirected graph G. 
 
3. (Optional) Find all articulation points in G. 
 
Terminology: Given an undirected graph, a depth-first search (DFS) algorithm constructs a 
directed tree from the root (first node in the V).  If there exists a directed path in the tree from v 
to w, then v is an predecessor of w and w is a descendant of v. 
 
A node-node adjacency structure is an n × n matrix such that entry aij = 1 if node i is adjacent to 
node j and 0 otherwise.  A node-edge adjacency structure lists for each node, the nodes adjacent 
to it.  
 
Example 

Let V = {1,2,3,4} and E = {(1,2), (1,3), (2,3), (3,4)}.  The node-node adjacency structure is 
 
0 1 1 0 
1 0 1 0 
1 1 0 1 
0 0 1 0 
 
The node-edge adjacency structure is 
 
1: 2,3 
2: 1,3 
3: 1,2,4 
4: 3 

 

1

2

4

3

 

 
 
Note that node 4 is called a leaf. 
 
(1 and 2) Depth-first search (DFS) can be used to solved all three problems.  It is usually 
assumed that the graph data structure is of the type node-edge adjacency instead of node-node 
adjacency.  In the node-edge adjacency structure, the nodes are numbered from 1 to n.  The 
node-i record lists the nodes adjacent to node i (connected to node i by an edge). 
 
DFS starts by setting node 1 as the current node.  
 
DFS iteration (i is the current node) 
 
– If one or more nodes of the node-i record were not yet visited from i, let node j be the first 
node not visited.  If node j was already visited by DFS (obviously from node other than node i), 
mark edge (i,j) as back edge otherwise mark edge (i,j) as tree edge and set i as parent of j.  Mark 
node j as visited in the node-i record. Set node j as current node.  
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– Otherwise (all nodes of node-i record were visited), set node k as current node, where node k is 
the parent of i. 
 
The algorithm stops when node 1 is current (i.e., the algorithm returns to node 1).  If all nodes 
were visited, then the graph is connected. Each back edge (i,j) defines a cycle.  A cycle consists 
of the back edge (i,j) and unique tree edges forming the path from j to i.  The cycles so defined 
by the back edges form a cycle base of the graph (see below).  Every cycle of the graph is the 
union (exclusive OR) of two or more cycles from this cycle base.  Of course, the number of 
cycles in a graph can be exponential in the number of nodes of the graph. 
 
For the above example the DFS goes as follows:  
 
 current  
 node edge 
 1  (1,2) tree, 1 is parent of 2 
 2  (2,3) tree, 2 is parent of 3 
 3  (3,4) tree, 3 is parent of 4 
 4 none 
 3 (3,1) back 
 3 none 
 2 none 
 1 END 
 
Note that a subroutine is needed to find the union of two or more cycles so that all the cycles can 
be uncovered.  One way (I think) to find all the cycles is to restart the algorithm at each node.  
However, this would be inefficient because many cycles already identified would be 
rediscovered when restarting. 
 
Cycle base and cycle representation 

A cycle base is a set of m – (n – 1) cycles that are independent in the sense that we cannot 
reconstruct one cycle from the set by the union (defined below) of two or more other cycles of 
the set.  The set of m – (n – 1) back edges defines a cycle base.  This is not the only cycle base. 
Actually there can be an exponential number of them. 
 
(Note: The method will find non-existing cycles in case there are no overlapping edges at all 
between the two cycles in base. This can be fixed by first applying AND on each two cycles in 
base.) 
 
The number of back edges is always m – (n – 1)  provided the graph is connected.  This is 
because the maximum number of edges in a tree is (n – 1), as in a spanning tree, and in the DFS 
algorithm the tree edges form a spanning tree.  This is easily proved by showing that the tree 
edges induce a connected subgraph that contains every node of the graph and contains no cycle.  
If the graph is not connected then the number of back edges is m – (n – 1) + (p – 1) where p is 
the number of connected components. 
 
Every other cycle of the graph can be obtained by the union of two or more cycles of the cycle 
base.  By union I mean an "exclusive OR" operation.  To perform this operation, we represent 
cycles by edge-incidence vectors.  Consider a second example: 
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node 1: 2 
node 2: 1,3,6 
node 3: 2,4,6 
node 4: 3,5,6 
node 5: 4,6 
node 6: 2,3,4,5 
 
Note, node 1 is a leaf. 
 
The DFS algorithm will produce the following result (I omitted some steps). 
 
edge (1,2): tree, 1 is parent of 2 
edge (2,3): tree, 2 is parent of 3 
edge (3,4): tree, 3 is parent of 4 
edge (4,5): tree, 4 is parent of 5 
edge (5,6): tree, 5 is parent of 6 
edge (6,2): back 
edge (6,3): back 
edge (6,4): back 
 
A cycle consists of the back edge (i,j) and the unique tree edges forming the path from j to i. The 
cycles that would be identified are:  
 
2-3-4-5-6-2 
3-4-5-6-3 
4-5-6-4 
 
The cycles that would be missed are: 
 
2-3-6-2 
2-3-4-6-2 
3-4-6-3 
  
Now assume that the vector of all edges in the graph is  
 

(1,2) (2,3) (2,6) (3,4) (3,6) (4,5) (4,6) (5,6) 
 
The incidence vector of cycle (2,3,4,5,6,2) is 01110101 and the one of cycle (3,4,5,6,3) is 
00011101. An exclusive OR on these two incidence vectors gives the vector 01101000 which 
corresponds to cycle (2,3,6,2).  If more than two cycles of the base are involved, then the 
operation is similar.  I am not sure exactly what happens when the operation is performed on a 
set of cycles of the base for which one or more edges appear more than twice.  Do we count the 
edge if it appears an odd number of times?  Maybe any simple cycle can be retrieved by adding a 
set of cycles of the base such that no edge appears more than twice in the set. But I am not sure. 
 

- 3 - 



- 4 - 

3. Articulation points 

Node k ∈ V is an articulation point of G if G \{k} has more than one component.  That is, when k 
is removed from the graph, one or more unconnected subgraphs result.  In the above example, 
node 3 is an articulation point. 
 
To uncover articulation points with DFS you need to record one extra label at every node.  This 
label is usually denoted by low(v), where low(v) = min{v, w : (u,w) is a back edge with u  ≠ v a 
descendant of v and w a predecessor of v}.  At the end of the algorithm the nodes with low(v) = v 
are articulation points if v has at least one child (this condition rules out leaves).  The exception 
is node 1.  Node 1 is an articulation point if and only if it is the parent of two or more nodes. 
 
The expression “min{v,w}” simply means that low(v) is equal to v itself except if there exists a 
back edge that connects a successor (descendant) of v to a predecessor (ascendant) of v, say w.  
In this case the value of low(v) = w.  Note that “min{v,w}” does not mean that you select the 
minimum value of v or w. The DFS algorithm constructs a directed tree rooted at node 1. This 
tree determines a partial ordering of the nodes. A node w is a successor of another node v (and v 
is a predecessor of w) if there exists a directed path from v to w in the tree. 
 
In practice, a portion of the DFS algorithm is a numbering scheme. We number (or renumber) 
the nodes in the order that they are "discovered" by the DFS.  Thus if DFS "discovers" a back 
edge (u,w) we need to update the low(v) labels on all internal nodes on the unique path of tree 
edges from w to u.  A brute force method of doing this is, starting from u, traverse the tree edges 
backwards until w is reached. If this brute force method is applied every time a back edge is 
"discovered", the whole algorithm is clearly O(mn). To make it O(n), one uses a trick proposed 
by Tarjan but I don’t recall what it is. 
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