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Bayesian networks

AIMA2e Chapter 14.1–3
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Outline

♦ Syntax

♦ Semantics

♦ Parameterized distributions
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Bayesian networks

A simple, graphical notation for conditional independence assertions

and hence for compact specification of full joint distributions

Syntax:

a set of nodes, one per variable

a directed, acyclic graph (link≈ “directly influences”)

a conditional distribution for each node given its parents:

P(Xi|Parents(Xi))

In the simplest case, conditional distribution represented as

aconditional probability table(CPT) giving the

distribution overXi for each combination of parent values
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Example

Topology of network encodes conditional independence assertions:

Weather Cavity

Toothache Catch

Weather is independent of the other variables

Toothache andCatch are conditionally independent givenCavity
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Example

I’m at work, neighbor John calls to say my alarm is ringing, but neighbor

Mary doesn’t call. Sometimes it’s set off by minor earthquakes. Is there a

burglar?

Variables:Burglar, Earthquake, Alarm, JohnCalls, MaryCalls

Network topology reflects “causal” knowledge:

– A burglar can set the alarm off

– An earthquake can set the alarm off

– The alarm can cause Mary to call

– The alarm can cause John to call
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Example contd.
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Compactness

A CPT for BooleanXi with k Boolean parents has

2krows for the combinations of parent values

Each row requires one numberp for Xi = true

(the number forXi = false is just1 − p)

If each variable has no more thank parents,

the complete network requiresO(n · 2k) numbers

B E

J

A

M

I.e., grows linearly withn, vs.O(2n) for the full joint distribution

For burglary net,1 + 1 + 4 + 2 + 2 = 10 numbers (vs.25 − 1 = 31)
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Global semantics

Globalsemantics defines the full joint distribution

as the product of the local conditional distributions:

P(X1, . . . ,Xn) =
n∏

i=1

P(Xi|Parents(Xi))

e.g.,P (j ∧ m ∧ a ∧ ¬b ∧ ¬e)

=

B E

J

A

M
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Global semantics

Globalsemantics defines the full joint distribution

as the product of the local conditional distributions:

P(X1, . . . ,Xn) =
n∏

i=1

P(Xi|Parents(Xi))

e.g.,P (j ∧ m ∧ a ∧ ¬b ∧ ¬e)

= P (j|a)P (m|a)P (a|¬b,¬e)P (¬b)P (¬e)

B E

J

A

M
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Local semantics

Local semantics: each node is conditionally independent

of its nondescendants given its parents

. . .

. . .U1

X

Um

Yn

Znj

Y1

Z1j

Theorem:Local semantics⇔ global semantics

10



'

&

$

%

Markov blanket

Each node is conditionally independent of all others given its

Markov blanket: parents + children + children’s parents

. . .

. . .U1

X

Um

Yn

Znj

Y1

Z1j
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Constructing Bayesian networks

Need a method such that a series of locally testable assertions of
conditional independence guarantees the required global semantics

1. Choose an ordering of variablesX1, . . . , Xn

2. Fori = 1 ton

addXi to the network
select parents fromX1, . . . , Xi−1 such that

P(Xi|Parents(Xi)) = P(Xi|X1, . . . , Xi−1)

This choice of parents guarantees the global semantics:

P(X1, . . . ,Xn) =
n∏

i = 1

P(Xi|X1, . . . , Xi−1) (chain rule)

=
n∏

i = 1

P(Xi|Parents(Xi)) (by construction)
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Example

Suppose we choose the orderingM , J , A, B, E

MaryCalls

JohnCalls

P (J |M) = P (J)?
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Example

Suppose we choose the orderingM , J , A, B, E

MaryCalls

Alarm

JohnCalls

P (J |M) = P (J)? No
P (A|J, M) = P (A|J)? P (A|J, M) = P (A)?
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Example

Suppose we choose the orderingM , J , A, B, E

MaryCalls

Alarm

Burglary

JohnCalls

P (J |M) = P (J)? No
P (A|J, M) = P (A|J)? P (A|J, M) = P (A)? No
P (B|A, J, M) = P (B|A)?
P (B|A, J, M) = P (B)?
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Example

Suppose we choose the orderingM , J , A, B, E

MaryCalls

Alarm

Burglary

Earthquake

JohnCalls

P (J |M) = P (J)? No
P (A|J, M) = P (A|J)? P (A|J, M) = P (A)? No
P (B|A, J, M) = P (B|A)? Yes
P (B|A, J, M) = P (B)? No
P (E|B, A, J, M) = P (E|A)?
P (E|B, A, J, M) = P (E|A, B)?
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Example

Suppose we choose the orderingM , J , A, B, E

MaryCalls

Alarm

Burglary

Earthquake

JohnCalls

P (J |M) = P (J)? No
P (A|J, M) = P (A|J)? P (A|J, M) = P (A)? No
P (B|A, J, M) = P (B|A)? Yes
P (B|A, J, M) = P (B)? No
P (E|B, A, J, M) = P (E|A)? No
P (E|B, A, J, M) = P (E|A, B)? Yes
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Example contd.

MaryCalls

Alarm

Burglary

Earthquake

JohnCalls

Deciding conditional independence is hard in noncausal directions

(Causal models and conditional independence seem hardwired for

humans!)

Assessing conditional probabilities is hard in noncausal directions

Network is less compact:1 + 2 + 4 + 2 + 4 =13 numbers needed
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Example: Car diagnosis

Initial evidence: car won’t start
Testable variables (green), “broken, so fix it” variables (orange)
Hidden variables (gray) ensure sparse structure, reduce parameters

lights

no oil no gas
starter
broken

battery age alternator
  broken

fanbelt
broken

battery
  dead no charging

battery
    flat

engine won’t
       start

gas gauge

fuel line
blocked

oil light
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Example: Car insurance

SocioEcon
Age

GoodStudent

ExtraCar
Mileage

VehicleYear
RiskAversion

SeniorTrain

DrivingSkill MakeModel

DrivingHist

DrivQuality
Antilock

Airbag CarValue HomeBase AntiTheft

Theft
OwnDamage

PropertyCostLiabilityCostMedicalCost

Cushioning

Ruggedness Accident

OtherCost OwnCost
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Compact conditional distributions

CPT grows exponentially with no. of parents

CPT becomes infinite with continuous-valued parent or child

Solution:canonicaldistributions that are defined compactly

Deterministicnodes are the simplest case:

X = f(Parents(X)) for some functionf

E.g., Boolean functions

NorthAmerican ⇔ Canadian ∨ US ∨ Mexican

E.g., numerical relationships among continuous variables

∂Level

∂t
= inflow + precipitation - outflow - evaporation
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Compact conditional distributions contd.

Noisy-ORdistributions model multiple noninteracting causes
1) ParentsU1 . . . Uk include all causes (can addleak node)
2) Independent failure probabilityqi for each cause alone

⇒ P (X |U1 . . . Uj ,¬Uj+1 . . .¬Uk) = 1 −∏j
i = 1 qi

Cold F lu Malaria P (Fever) P (¬Fever)

F F F 0.0 1.0

F F T 0.9 0.1

F T F 0.8 0.2

F T T 0.98 0.02 = 0.2 × 0.1

T F F 0.4 0.6

T F T 0.94 0.06 = 0.6 × 0.1

T T F 0.88 0.12 = 0.6 × 0.2

T T T 0.988 0.012 = 0.6 × 0.2 × 0.1

Number of parameterslinear in number of parents

22



'

&

$

%

Hybrid (discrete+continuous) networks

Discrete (Subsidy? andBuys?); continuous (Harvest andCost)

Buys?

HarvestSubsidy?

Cost

Option 1: discretization—possibly large errors, large CPTs
Option 2: finitely parameterized canonical families

1) Continuous variable, discrete+continuous parents (e.g.,Cost)
2) Discrete variable, continuous parents (e.g.,Buys?)
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Continuous child variables

Need oneconditional densityfunction for child variable given continuous

parents, for each possible assignment to discrete parents

Most common is thelinear Gaussianmodel, e.g.,:

P (Cost = c|Harvest =h, Subsidy? = true)

= N(ath + bt, σt)(c)

=
1

σt

√
2π

exp

(
−1

2

(
c − (ath + bt)

σt

)2
)

MeanCost varies linearly withHarvest, variance is fixed

Linear variation is unreasonable over the full range

but works OK if thelikely range ofHarvest is narrow
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Continuous child variables

0 2 4 6 8 10 12Cost c 0
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P(c | h, subsidy)

All-continuous network with LG distributions

⇒ full joint distribution is a multivariate Gaussian

Discrete+continuous LG network is aconditional Gaussiannetwork i.e., a

multivariate Gaussian over all continuous variables for each combination

of discrete variable values
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Discrete variable w/ continuous parents

Probability ofBuys? givenCost should be a “soft” threshold:
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C
os

t=
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Cost c

Probitdistribution uses integral of Gaussian:
Φ(x) =

∫
−∞

xN(0, 1)(x)dx

P (Buys? = true | Cost = c) = Φ((−c + µ)/σ)
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Why the probit?

1. It’s sort of the right shape

2. Can view as hard threshold whose location is subject to noise

Buys?

Cost Cost Noise
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Discrete variable contd.

Sigmoid(or logit) distribution also used in neural networks:

P (Buys? = true | Cost = c) =
1

1 + exp(−2−c+µ
σ )

Sigmoid has similar shape to probit but much longer tails:
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Summary

Bayes nets provide a natural representation for (causally induced)

conditional independence

Topology + CPTs = compact representation of joint distribution

Generally easy for (non)experts to construct

Canonical distributions (e.g., noisy-OR) = compact representation of

CPTs

Continuous variables⇒ parameterized distributions (e.g., linear

Gaussian)
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