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‘ Bayesian networkﬂ

A simple, graphical notation for conditional independence assertions
and hence for compact specification of full joint distributions

Syntax:
a set of nodes, one per variable
a directed, acyclic graph (link “directly influences”)
a conditional distribution for each node given its parents:
P(X;|Parents(Xj;))

In the simplest case, conditional distribution represented as
aconditional probability tabléCPT) giving the
distribution overX,; for each combination of parent values
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Example'

Topology of network encodes conditional independence assertions:

Toothache @

Weather is independent of the other variables

Toothache andC'atch are conditionally independent givérvity
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Example'

I’'m at work, neighbor John calls to say my alarm is ringing, but neighb¢r
Mary doesn’t call. Sometimes it's set off by minor earthquakes. Is ther¢ a
burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
Network topology reflects “causal” knowledge:

— A burglar can set the alarm off

— An earthquake can set the alarm off

— The alarm can cause Mary to call

— The alarm can cause John to call
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‘ Example contd.'
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‘ Compactnesi
A CPT for BooleanX; with & Boolean parents has @

2*rows for the combinations of parent values

Each row requires one numbefor X,; = true ﬁ
(the number forX;, = false is justl — p) @ @
If each variable has no more tharparents,

the complete network requirg$(n - 2¥) numbers

l.e., grows linearly with:, vs.O(2") for the full joint distribution

For burglary net] + 1 4+ 4 + 2 + 2 =10 numbers (vs2®° — 1 = 31)
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\ Global semantics

Globalsemantics defines the full joint distribution @
as the product of the local conditional distributions:
P(Xy,...,Xy) = || P(Xi[Parents(X ’ ™
OB Q®

e.g..P(j AmAaA-bA —e)
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\ Global semantics

Globalsemantics defines the full joint distribution
as the product of the local conditional distribution

P(Xy,...,Xy) = || P(Xi[Parents(X

i=1

e.g.,.P(jAmAaN-bA —e)

= P(jla)P(m|a)P(a|=b, ~e) P(=b) P(—e)
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\ Local semantics

Local semantics: each node is conditionally independent
of its nondescendants given its parents

Theorem:Local semantics= global semantics

-
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\ Markov blanket '

Each node is conditionally independent of all others given its
Markov blanket parents + children + children’s parents
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/ ‘Constructing Bayesian networkﬂ \

Need a method such that a series of locally testable assertions of
conditional independence guarantees the required global semantics

1. Choose an ordering of variablas ., . ... X,
2. Fori=1ton

add_X; to the network

select parents fromX, ..., X,;_; such that

P(X;|Parents(Xj;)) = P(X;|Xq, ..., Xj_1)

This choice of parents guarantees the global semantics:
P(Xy,...,Xn) = |[P(XiXy,....Xi_1) (chain rule)
1=1

— HP(Xi\ParentS(Xi)) (by construction)
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/ Example'

Suppose we choose the orderiing .J, A, B,

P(J|M) = P(J)?
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/ Example'

Suppose we choose the orderiing .J, A, B,

P(JIM) = P(J)? No
P(A|J, M) = P(A|J)? P(A|J, M) = P(A)?

-
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/ Example'

Suppose we choose the orderiing ./, A, B, E

Burglary

(JIM) = P(J)? No

(A|lJ, M) = P(A|J)? P(A|J, M) = P(A)? No
(B|A, J, M) = P(B|A)?

(B|A, J, M) = P(B)?

T U U T
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/ Example'

Suppose we choose the ordering ./, A, B, £

J|M) = P(J)? No

AlJ, M) = P(A|J)? P(A|J,M) = P(A)? No
Bl|A,J,M)= P(B|A)? Yes

BlIA, J,M)= P(B)? No

E|B,A,J, M) = P(E|A)?

E|B,A,J, M) = P(E|A, B)?
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/ Example'

Suppose we choose the ordering ./, A, B, £

JIM)=P(J)? No
AlJ, M) = P(A|J)? P(A|J,M) = P(A)? No
Bl|A,J,M)= P(B|A)? Yes

B|A,J, M) = P(B)? No

E|B,A,J,M) = P(E|A)? No
E|B,A,J,M)= P(E|A,B)? Yes

Earthquake
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/ ‘ Example contd.' \

Deciding conditional independence is hard in noncausal directions

Earthquake

(Causal models and conditional independence seem hardwired for
humans!)

Assessing conditional probabillities is hard in noncausal directions

\Network IS less compact: + 2 + 4 + 2 + 4 =13 numbers needed /

18



/ Example: Car diagnosis' \

Initial evidence: car won't start
Testable variables (green), “broken, so fix it” variables (orange)
Hidden variables (gray) ensure sparse structure, reduce parameters

starter
broken
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‘ Example: Car insurance. \
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Compact conditional distributions I

CPT grows exponentially with no. of parents
CPT becomes infinite with continuous-valued parent or child

Solution: canonicaldistributions that are defined compactly

Deterministicnodes are the simplest case:
X = f(Parents(X)) for some functionf

E.g., Boolean functions
NorthAmerican < Canadian vV US V Mexican

E.g., numerical relationships among continuous variables

OLevel
ot

= Inflow + precipitation - outflow - evaporation

-
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/ Compact conditional distributions contd.'

Noisy-ORdistributions model multiple noninteracting causes
1) Parents/; ... U, include all causes (can adieBk nodé
2) Independent failure probability for each cause alone

:>P(X’U1...Uj,_l j_|_1..._'U]€):1_ 221Qi

Cold Flu Malaria | P(Fever) | P(—Fever)

F F F 0.0 1.0

F F T 0.9 0.1

F T F 0.8 0.2

F T T 0.98 0.02=0.2 x0.1

T F F 0.4 0.6

T F T 0.94 0.06 = 0.6 x 0.1

T T F 0.88 0.12 = 0.6 x 0.2

T T T 0.988 0.012 =0.6 X 0.2 x 0.1

\Number of parameteigiear in number of parents

~
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/ Hybrid (discrete+continuous) networks' \

Discrete Gubsidy? and Buys?); continuous {{ arvest andCost)

Option 1: discretization—possibly large errors, large CPTs
Option 2: finitely parameterized canonical families

1) Continuous variable, discrete+continuous parents (€@:i)

\2) Discrete variable, continuous parents (e..ys?) /
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Continuous child variables'

Need oneconditional densityunction for child variable given continuous
parents, for each possible assignment to discrete parents

Most common is théinear Gaussiamodel, e.g.,:

P(Cost = c|Harvest = h, Subsidy? =true)
= N(ath—l—bt,at)(c)

(o))

MeanC'ost varies linearly with/ arvest, variance is fixed

Linear variation is unreasonable over the full range
but works OK if thelikely range of H arvest Is narrow

\_ /
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Continuous child variables.

6 2
| Costc © 10 15 0°
All-continuous network with LG distributions

= full joint distribution is a multivariate Gaussian

\of discrete variable values

Discrete+continuous LG network iscanditional Gaussianetwork i.e., a
multivariate Gaussian over all continuous variables for each combinati

~
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/ Discrete variable w/ continuous parentj \

Probability of Buys? givenCost should be a “soft” threshold:
1 . . . . .

08

c)

06 r

04 r

P(Buys?=false|Cost

02 r

0 . . . . .
0 2 4 6 8 10 12
Costc

Probitdistribution uses integral of Gaussian:
O(x) = J___*N(0,1)(z)dx
P(Buys? =true | Cost=c) = ®((—c+ u)/0)
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Why the probit? I

1. It’s sort of the right shape

2. Can view as hard threshold whose location is subject to noise

AN
& @ e

Buys? I
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c)

P(Buys?=false|Cost

Discrete variable Contd.I

P(Buys?=true | Cost=c) =

1

09 r
08 r
0.7
06
05
04 r
03 1
02 1
01

Sigmoid(or logit) distribution also used in neural networks:

1
1 + exp(—2=5H2)

(o)

Sigmoid has similar shape to probit but much longer tails:
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Summary'

Bayes nets provide a natural representation for (causally induced)
conditional independence

Topology + CPTs = compact representation of joint distribution
Generally easy for (non)experts to construct

Canonical distributions (e.g., noisy-OR) = compact representation of
CPTs

Continuous variabless- parameterized distributions (e.g., linear
Gaussian)
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