
CS 440: Introduction to Artificial Inttelligence Lecture date: 12 February 2008
Instructor: Eyal Amir Guest Lecturer: Mark Richards

1 Variable Elimination in Bayesian Networks

Review: Inference

Given a joint probability distribution over variables a set of variables X = X1, X2, . . . , Xn, we can
make inferences of the form (Y |Z), where Y ⊂ X is the set of query variables, Z ⊂ X are the
evidence variables. The other variables H (those not mentioned in the query) are called hidden
variables. To be clear, X = Y ∪ Z ∪H.

The most naive and expensive way to do inference is to use the full joint probability distribution
and sum out the hidden variables. By the product rule, P (Y |Z)P (Z) = P (Y, Z). (Note that this
is true for any distribution. This does not have anything to do with independence.) So to answer
the query P (Y |Z), we can compute P (Y,Z)

P (Z) . Note that P (Y, Z) =
∑

H P (Y, Z, H). From the view of
the full joint probability table, we are summing the probabilities for all of the entries in the table
that match the values of the query variables and evidence variables (this includes entries for all of
the combinations of values for the hidden variables) and dividing by the sum of all the entries that
match the values of the evidence variables. (Note that the values in the first sum are a subset of
the values in the latter sum.) This method is straightforward conceptually but has many problems.
First, you have to compute and store the values in the full joint distribution. The number of entries
is

∏
i Options(Xi), where Options(Xi) is the number of different values that variable Xi may have.

So for n Boolean variables, the full joint has 2n entries. For large networks, it is unreasonable
to store/compute this many values. Furthermore, if a query requires summing out most of the
variables, the time complexity is O(2n) as well.

Normalizing

Suppose we have variables A and B. We want to compute P (A|b). We use b to denote B = true.
The result of our query P (A, b) is a two-element table that specifies P (a, b) and P (¬a, b).Since
P (A|b)P (b) = P (A, b), we can compute P (A|b) = P (A,b)

P (b) . But we also know that P (b) = P (a, b) +
P (¬a, b). Since we need both P (a, b) and P (¬, b) to answer the query, this may actually be the
best way to compute P (b). The way this is expressed in the book is that P (A|b) = αP (A, b), where
α is a normalizing constant that makes the values in the table P (A|b) sum to 1. (In this case, α is
P (b), but the idea is that it doesn’t matter what it is; we just know that we need to normalize to
make sure that the values in P (A|b) sum to 1.

Enumeration

Using the burglar alarm network, suppose we wish to compute the probability that there is an
earthquake, given that both John and Mary call:

P (E|j, m) = αP (E, j,m)

We need to sum over all the values of the hidden vars:

αP (E, j,m) =
∑

a

∑
b

P (E, j,m, b, a)

This may be a slight abuse of notation. The lower case j, m mean that JohnCalls = true and
MaryCalls = true. The lowercase b, a mean that we are summing over all values of the variables
B,A. So now we have a sum over entries from the full joint. We can retrieve these using our
Bayesian network structure:∑

b

∑
a

P (E, j,m, b, a) =
∑

b

∑
a

P (b)P (E)P (a|b, E)P (j|a)P (m|a)

In general, sums of this form could take O(n2n) time to compute. There may be n values to
multiply together to compute each product term, and up to O(2n) total terms to sum up. We can
save some computations by pushing the

∑
’s inward as much as possible:

∑
b

∑
a

P (b)P (E)P (a|b, E)P (j|a)P (m|a) = P (E)
∑

b

P (b)
∑

a

P (a|b, E)P (j|a)P (m|a)

We need to do this sum both for E = true and E = false. For the first case:

P (e)
(

P (b) (P (a|b, e)P (j|a)P (m|a) + P (¬a|b, e)P (j|¬a)P (m|¬a))+
P (¬b) (P (a|¬b, e)P (j|a)P (m|a) + P (¬a|¬b, e)P (j¬a)P (m|¬a))

)
Even here, we can see some wasted computations: the product P (j|a)P (m|a) is computed twice,

and so is P (j|¬a)P (m|¬a). In this example, we do two extra multiplications, which is no big deal.
But in a large network, this kind of waste can be debilitating.

Variable Elimination

(We follow Section 14.4 in Russell-Norvig with some additional details.) Here we introduce a
variable elimination algorithm that will help us avoid the duplicate computations; it is a form of
dynamic programming. We introduce tables called factors to help us do the bookkeeping. Initially,
we will have one factor for each CPT term in our expression:

α P (E)︸ ︷︷ ︸
E

∑
b

P (b)︸︷︷︸
B

∑
a

P (a|b, E)︸ ︷︷ ︸
A

P (j|a)︸ ︷︷ ︸
J

P (m|a)︸ ︷︷ ︸
M

E fE(E)
T .002
F .998

B fB(B)
T .001
F .999

A B E fA(A,B, E)
T T T .95
T T F .94
T F T .29
T F F .001
F T T .05
F T F .06
F F T .71
F F F .999

A fJ(A)
T .9
F .05

A fM (A)
T .7
F .01

The initial tables store the values from the CPTs that we will need over the course of the
query evaluation. The factor for E, denoted fE(E), is a two-element vector because we will be
computing both P (e, j,m) and P (¬e, j,m) (we will normalize at the end to compute P (e|j, m) and
P (¬e|j, m)). The subscript E names the factor, and the (E) means that the value of E varies
in the factor. The factor for B is also a two-element vector fB(B), because we will need to sum
out the variable B. The factor fA(A,B, E) requires 2 × 2 × 2 elements because we will need all
combinations of values for A,B, and E in the expression. And even though J and M both have
parents in the network, the factors fJ(A) and fM (A) have only two elements because throughout
the expression, we are only interested in cases where JohnCalls = true and MaryCalls = true.

There are two operations that we need to be able to perform on factors: multiplication and
summing out. The multiplication operation is similar to a natural join on database tables, as
opposed to a matrix multiplication or an element-by-element multiplication. The set of variables
in the product of two factors is the union of the sets of variables in the operands. In the product
factor, there will be one entry for every combination of values for variables in the resulting set. The
value of each entry is the product of the entries in the original tables that match the values for all
relevant variables. For example, consider the product fJM (A) = fJ(A)fM (A):

A fJM (A)
T .9 * .7
F .05 * .01

=
A fJ(A)
T .9
F .05

A fM (A)
T .7
F .01

The union of variables in the operands is A. The entry for T in the resulting table is the product
of the entries where A = True in the operands. Now consider fAJM (A,B, E) = fA(A,B, E)fJM (A).

A B E fAJM (A,B, E)
T T T .95 * .63
T T F .94 * .63
T F T .29 * .63
T F F .001 * .63
F T T .05 * .0005
F T F .06 * .0005
F F T .71 * .0005
F F F .999 * .0005

=

A B E fAJM (A,B, E)
T T T .95
T T F .94
T F T .29
T F F .001
F T T .05
F T F .06
F F T .71
F F F .999

A fJM (A)
T .63
F .0005

The entry for A = T,B = T,E = T in fAJM (A,B, E) is the product of corresponding entries
from fA(A,B, E) where A = T,B = T,E = T and from fJM(A) where A = T (since B,E do not
appear in fJM(A). In general, we have

f(X1, . . . , Xj , Y1, . . . , Yk, Z1 . . . , Zl) = f1(X1, . . . , Xj , Y1, . . . , Yk)f2(Y1, . . . , Yk, Z1, . . . , Zl)

The factors f1 and f2 share common variables Y . If f1 has a total of j + k variables and f2 has
k + l variables, then the product will have j + k + l variables. Each entry in the result will have all
the variables X ∪ Y ∪ Z and the entry for a particular valuation of X, Y, Z will be the product of
the entry in f1 that has the same values for X, Y and the entry in f2 that has the same values for
Y, Z.

The other operation we need for factors is summing out. If, for example, we sum out A
from fAJM (A,B, E), the resulting factor will be named fĀJM (B,E) (with the bar on the A in the
subscript denoting that A was summed out). There is one entry in fĀJM (B,E) for each combination
of values of B,E in fAJM (B,E). The value of the entry is the sum of all entries in fAJM (B,E)
that have the same values of B,E (but differing values of A):

B E fĀJM (B,E)
T T .95 * .63 + .05 * .0005 = .5985
T F .94 * .63 + .06 * .0005 = .5922
F T .29 * .63 + .71 * .0005 = .1830
F F .001 * .63 + .999 * .0005 = .001129

We are now ready to compute the answer to our query:

αP (E)
∑

b P (b)
∑

a P (a|b, e)P (j|a)P (m|a)

= αfE(E)
∑

B fB(B)
∑

a fA(A,B, E)fJ(A)fm(A)
= αfE(E)

∑
B fB(B)

∑
a fA(A,B, E)fJM (A)

= αfE(E)
∑

B fB(B)
∑

a fAJM (A,B, E)
= αfE(E)

∑
B fB(B)fĀJM (B,E)

= αfE(E)
∑

B fBĀJM (B,E)
= αfE(E)fB̄ĀJM (E)
= αfEB̄ĀJM (E)

We have already computed fĀJM , so we can proceed from step 5, where we compute fBĀJM (B,E):

B E fBĀJM (B,E)
T T .5985 * .001
T F .5922 * .001
F T .1830 * .999
F F .001129 * .999

=
B fB(B)
T .001
F .999

B E fĀJM (B,E)
T T .5985
T F .5922
F T .1830
F F .001129

Next, we sum out B to produce fB̄ĀJM (E).

E fB̄ĀJM (E)
T .0005985 + .1828= .1834
F .0005922 * .001128= .001720

Now we compute fEB̄ĀJM (E):

E fB̄ĀJM (E)
T .1834 * .002 = .0003699
F .001720 * .998 = .001717

=
E fE(E)
T .002
F .998

E fB̄ĀJM (E)
T .1834
F .001720

So we have αfEB̄ĀJM (E) = α〈.0003699, .001717〉 = 〈.1772, .8228〉, or in other words, P (e|j, m) =
.1772.

Another Example

Using the Bayesian Network from Homework 2 Problem 3, we will compute P (E|d):

P (E|d) = αP (E, d)
= α

∑
a,b,c P (a, b, c, E, d)

= α
∑

a P (a)
∑

c P (c|a)
∑

b P (b)P (d|b)P (E|b, c)
= α

∑
a fA(A)

∑
c fC(A,C)

∑
b fB(B)fD(B)fE(B,C,E)

= α
∑

a fA(A)
∑

c fC(A,C)
∑

b fBDE(B,C,E)
= α

∑
a fA(A)

∑
c fC(A,C)fB̄DE(C,E)

= α
∑

a fA(A)
∑

c fCB̄DE(A,C, E)
= α

∑
a fA(A)fC̄B̄DE(A,E)

= α
∑

a fAC̄B̄DE(A,E)
= αfĀC̄B̄DE(E)

The only variable in the expression that is fixed is D. So the initial factors are:

A fA(A)
T .3
F .7

A C fC(A,C)
T T .2
T F .8
F T .4
F F .6

B fB(B)
T .8
F .2

B fD(B)
T .1
F .6

B C E fE(B,C,E)
T T T .5
T T F .5
T F T .9
T F F .1
F T T .4
F T F .6
F F T .7
F F F .3

We can compute fBDE(B,C,E) from the rightmost three factors in one step:

B C E fBDE(B,C,E)
T T T .8 * .1 * .5 = .04
T T F .8 * .1 * .5 = .04
T F T .8 * .1 * .9 = .072
T F F .8 * .1 * .1 = .008
F T T .2 * .6 * .4 = .048
F T F .2 * .6 * .6 = .072
F F T .2 * .6 * .7 = .084
F F F .2 * .6 * .3 = .036

=
B fB(B)
T .8
F .2

B fD(B)
T .1
F .6

B C E fE(B,C,E)
T T T .5
T T F .5
T F T .9
T F F .1
F T T .4
F T F .6
F F T .7
F F F .3

Now we sum out B:

C E fB̄DE(C,E)
T T .04 + .048 = .088
T F .04 + .072 = .112
F T .072 + .084 = .156
F F .008 + .036 = .044

Next, we compute fCB̄DE(A,C, E):

A C E fCB̄DE(A,C, E)
T T T .2 * .088 = .0176
T T F .2 * .112 = .0224
T F T .8 * .156 = .1248
T F F .8 * .044 = .0352
F T T .4 * .088 = .0352
F T F .4 * .112 = .0448
F F T .6 * .156 = .0936
F F F .6 * .044 = .0264

=

A C fC(A,C)
T T .2
T F .8
F T .4
F F .6

C E fB̄DE(C,E)
T T .088
T F .112
F T .156
F F .044

Now we sum out C:

A E fC̄B̄DE(A,E)
T T .0176 + .1248 = .1424
T F .0224 + .0352 = .0576
F T .0352 + .0936 = .1288
F F .0448 + .0264 = .0712

Next, we compute fAC̄B̄DE(A,E):

A E fAC̄B̄DE(A,E)
T T .3 * .1424 = .04272
T F .3 * .0576 = .01728
F T .7 * .1288 = .09016
F F .7 * .0712 = .04984

=
A fA(A)
T .3
F .7

A E fC̄B̄DE(A,E)
T T .1424
T F .0576
F T .1288
F F .0712

Then we sum out A

E fĀC̄B̄DE(A,E)
T .04272 + .09016 = .13288
F .01728 + .04984 = .06712

Finally, αfĀC̄B̄DE(E) = α〈.13288, .06712〉 = 〈.6644, .3356〉. So P (¬e|d) = .3356.
In these small-network examples, it may seem like the variable elimination algorithm actually

requires more work than enumeration. But in some large networks, the computational savings can
be large. The complexity of variable elimination depends on the size of the largest factor that must

be created during the computation. This in turn depends on the order in which the variables are
eliminated. In polytree networks with a consistent ordering of the variables (i.e., a parent comes
before any of its children), the time and space complexity is linear in the size of the network.

	Variable Elimination in Bayesian Networks

