
  

        MATH 212      FINAL EXAMINATION    7 May 2012 
 
 

       PART I  (4 pts each)  
 

(A)    Show that each of the following assertions is false.  Be precise, giving a specific 

counter-example when appropriate. 

 

1.   Let A and B be n×n symmetric matrices.   Then AB is symmetric. 

 

 

 

 

 

2.   Let A be an n×n matrix.   If  and  are distinct eigenvalues of A with corresponding 

eigenvectors x and y, respectively, then x + y is an eigenvector of A. 

 

 

 

 

 

 

 

 

3.  If A and B are square matrices with the same characteristic polynomial, then A and B 

are similar. 

 

 

 

 

 

 

 

4.  Let A and B be n×n matrices. If A and B are each diagonalizable, then A+B is 

diagonalizable.   

 

 

 



 2 

 

 

5. There exists a 5×5 matrix, A, such that the row space of A equals the nullspace of A. 

 

 

 

 

 

 

 

6.  Let A and B be n×n matrices. If A and B are each diagonalizable, then AB is 

diagonalizable.   

 

 

 

 

 

 

7.  Let A be an n×n matrix and let B be an n×1 matrix.  Then the solution space 

 of  AX = B, where X is an n×1 matrix, is a subspace of R
n
. 

 

 

 

 

 

 

 

8.   Let U and W be subspaces of a vector space V.  Then U W is a subspace of V. 
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9.   Let A be an m×n matrix, and let R be the row reduced echelon form of A.  Then the 

column space of A equals the column space of R. 

 

 

 

 

 

 

10.    Let M and N be n×n nilpotent matrices.  Then MN is nilpotent. 

 

 

 

 

 

 

11.    Let V, W, X be vector spaces and let T: V  W and S: W X  be linear 

transformations.  Then, if ST is injective, it follows that S is injective. 
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12.     Let V, W, X be vector spaces and let T: V  W and S: W X be linear 

transformations.  Then if ST is surjective it follows that T is surjective. 

 

 

 

 

 

 

13.   Let A be an n×n matrix.  If A has n eigenvectors then A is diagonalizable. 

 

 

 

 

 

 

 

 

 

14.     If A and B are n×n matrices, then det(A + B) = det A + det B.
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(B)   Short Answer (4 pts each)  No explanation is required.   

 

1.  Let A be a 19×33 matrix.   

(a)   Then the maximum possible value of the rank of A is ____.    

(b)    The minimum possible value of the rank of A is ____.    

(c)    The maximum possible value of the dimension of the nullspace of A is _____.   

(d)    The minimum possible value of the dimension of the nullspace of A is _____. 

 

2.  The dimension of the vector space of all 5×5 real symmetric matrices is ____. 

 

3.  The dimension of the vector space of all 4×4 real diagonal matrices is ____. 

 

4.  The dimension of the vector space of all real polynomials of the form  

a + bx
3
 + cx

5
  is ______. 

 

5.  The dimension of the vector space of all 4×3 real matrices having the property that 

the sum of the three entries in each of the four rows equals 0 is  _____. 

 

6. Let U and W be subspaces of a finite dimensional vector space V.   

Assume that dim U = 9 and dim W = 5.  If U ∩ W = {0V}, then the minimum possible 

dimension of V is _____. 

 

7. If the characteristic polynomial of A is p() = 
 4
( – 5)( – 7), then A is 

diagonalizable only if the dimension of the eigenspace associated with the eigenvalue 

 = 0 is _____. 
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PART II  (20 pts each)  

Solve any 4 of the following 5 problems.  You may answer all five for extra credit. 

 

1.   Let V be the vector space of all 3×3 real matrices.   

  Define the following relation on V:     

for A, B  V,  A is related to B if the sum of the nine entries of A equals  

the sum of the nine entries of B.   

 

(a)   Is this relation reflexive?  Why? 

 

 

 

 

 

 

 

(b)   Is this relation symmetric?  Why? 

 

 

 

 

 

 

 

 

(c)   Is this relation transitive?  Why? 
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2.  Let V be the vector space of all 3× 3 real matrices.  Let P  V  be invertible.   

Let S  be the set of all A V such that P
-1

AP is diagonal.  Is S a subspace of V ?   

If so, give a proof; if not, give a counter-example. 
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3. Let V and W be vector spaces and let T: V W be a linear transformation. 

(a)   Suppose that T is injective.  Let {x1, x2,  x3} be a linearly independent subset of V.   

Prove that  {T(x1), T(x2), T(x3)}  is a linearly independent subset of W.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b)   What happens if we remove the assumption that T is injective?  Explain. 
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4. Let V  be a vector space and let {x, y, z} be a linearly independent subset of V.  

Suppose that wV such that wspan{x, y, z}.  Prove that {x, y, z, w} is linearly 

independent. 
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5. Let A be an n×n matrix.   

(a)    Prove that A and A
T
 have the same characteristic polynomial.    

Hint:  Use the fact that, for any square matrix M,  det M = det M
T
. 

 

 

 

 

 

 

 

(b)     Suppose that A is invertible and that  is an eigenvalue of A.  

(i)  Explain why  ≠ 0. 

 

 

 

 

 

 

 

(ii)   Prove that 1/ is an eigenvalue of A
-1

. 
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PART III  (20 pts each):   Solve any 4 of the following 5 problems.  You may answer all 

five for extra credit. 

 

  























1001

3663

2442

1221

.1 ALet

 

 

 

(a)    Find the rank of A. 

 

 

 

(b)    Find a basis for the null-space of A. 

 

 

 

 

 

(c)    Find a basis for the row space of A. 

 

 

 

 

(d)    Find a basis for the column space of A. 
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   2.    Let T:  R
2
  R

3
 be the linear transformation defined by:    

T(x, y) = (2x – 5y,  0,  10y – 4x) 

 

(a)   Find a basis for ker(T). 

 

 

 

 

 

 

 

 

 

 

(b)    Find a basis for im(T). 
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3.  Consider the following LU factorization of a matrix A.  Using this factorization, solve the 

equation 
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(To earn credit for this exercise, you must use the given LU factorization.)  Show each 

step. 
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4.   Let A be a 3 × 3 matrix.  Suppose that (1, 2, 4) is an eigenvector of A with associated 

eigenvalue 5 and that (3, 1, 1) is an eigenvector of A with associated eigenvalue 7.    

   Let v = (6, 7, 13).    

(a)     Find Av. 

 

 

 

 

 

 

 

 

(b)   Does there exist a vector w  R
3
 such Aw = v?   Either find such a vector, w, or 

prove that no such w can exist. 
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(a)    Find the characteristic polynomial of A. 

 

 

 

 

 

 

(b)   Is A diagonalizable?  If so, find an invertible matrix P such that P
-1

AP is 

diagonal.  If not, explain. 
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Extra extra credit 

1.  Let A and B be n×n matrices.  Must AB and BA have the same eigenvalues?   

Give proof or counterexample. 

 

 

 

 

 

 

 

 

 

 

2.    If A is an n×n matrix satisfying  A
2
 = –I, what are the eigenvalues of A?   

If A is real, prove that n is even, and give an example.  

 

 

 

 

 

 


