Linear Algebra Practice Exam #1

Loyola University Chicago – Math 212.001 – Fall 2014

There will be between approx. 5 problems on your exam. In terms of points, they will be 70% computational, 20% conceptual, and 10% proof. The proofs might be low- to medium-difficulty. E.g., requiring you only to find a counter example to a statement, or do some simple linear combinations to see the answer. (See your latest workshop for examples, and #8 below for another.)

1. Solve by row-reducing an augmented matrix, displaying your solution set in multiple forms (as all coordinates (w, x, y, z) of some form, and as a particular sum of vectors):

2. For what values of a does the system of equation with the following augmented matrix have 0, 1 or infinitely many solutions?

$$\left(\begin{array}{rrrrr|r} 1 & 3 & 5 & 2\\ 0 & a^2 - 25 & 2 & 1\\ 1 & a^2 - 22 & 17 & a+3 \end{array}\right).$$

3. Consider the differential equation(s):

$$f'(x) = 2f(x) + 2x^n - 1. \tag{(\star_n)}$$

- (a) Find all polynomials f(x) in \mathcal{P}_2 satisfying (\star_2) .
- (b) Find all polynomials f(x) in \mathcal{P}_2 satisfying (\star_3) .
- 4. Indicate if the following statements are True or False:
 - (a) It is never the case that X = [X].
 - (b) It is always the case that [[X]] = [X].
 - (c) If X is linearly independent, then X is a basis for [X].
 - (d) If $X \subseteq V$ for some vector space V, and X is linearly independent, then X is a basis for V.
 - (e) If $X \subseteq V$ for some vector space V, and [X] = V, then X is a basis for V.
 - (f) If $X \subseteq V$ for some vector space V of dimension n, and |X| = n, and X is linearly independent, then X is a basis for V.
 - (g) If $X \subseteq V$ for some vector space V of dimension n, and |X| = n, and [X] = V, then X is a basis for V.

- (h) A system of equations with more equations than unknowns never has a solution.
- (i) A system of equations with more unknowns than equations will never have exactly one solution.
- (j) If A is an $n \times n$ matrix and the matrix equation $A\vec{x} = \vec{b}$ has a non-trivial solution, then the Gauss-Jordan form of A has n pivots.
- (k) If A is an invertible $n \times n$ matrix and \vec{b} is a vector in \mathbb{R}^n , then the matrix equation $A\vec{x} = \vec{b}$ has a unique solution \vec{x} .
- (1) (5) True or False: If V is a vector space, every subspace of V must contain the vector $\vec{0}$.
- (m) (5) True or False: The set of $\left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3 : a = b + 1 \right\}$ is not a subspace of \mathbb{R}^3 .
- (n) It is possible to find 5 linearly independent vectors in \mathbb{R}^3 .
- (o) (Definition: The *null space* of a matrix is the set of vectors \vec{x} solving the homogeneous system $A\vec{x} = \vec{0}$.) If A is a singular $n \times n$ matrix, then the null space of A is just $\{\vec{0}\}$.
- (p) (Definition from class: a matrix is *row/column deficient* if it has fewer pivots than rows/columns in its Gauss-Jordan form.) If A is a row-deficient matrix, then the null space of A is never just $\{\vec{0}\}$.
- (q) If A is a column-deficient matrix, then the null space of A is never just $\{\vec{0}\}$.
- (r) The set of polynomials such that $f(1) = f(2)^2$ is a subspace of the vector space \mathcal{P} of all polynomials.
- 5. Show that the set of 2×2 matrices A such that the trace satisfies tr(A) = 0 is a subspace of $M_{2\times 2}$.
- 6. Find a subset X' of the vectors X that forms a basis for [X]. If $[X] \neq \mathcal{P}_3$, then extend X' to a basis for \mathcal{P}_3 .

$$X = \left\{1 + x + x^{2} + x^{3}, 1 - x + x^{2} - x^{3}, 1 + x^{2}, -x - x^{3}\right\}$$

7. Find a tidy set Y of vectors in \mathbb{R}^4 that forms a basis for [X]. If $[X] \neq \mathbb{R}^4$, then extend Y to a basis for \mathbb{R}^4 .

$$X = \left\{ \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\1\\-1 \end{pmatrix}, \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\-1\\0\\-1 \end{pmatrix} \right\}$$

8. (Definition: a polynomial \vec{p} is a finite collection of monomials, e.g., $\vec{p} = a_0 + a_1 x + a_2 x^2 + \cdots + a_r x^r$. The highest power of x occurring in \vec{p} with nonzero coefficient is called the *degree* of \vec{p} .) Show that the vector space \mathcal{P} of all polynomials is infinite dimensional. (*Hint: argue by contradiction, starting with a finite basis for* \mathcal{P} .)