
Chapter 6

CHAPTER SIX THE JORDAN
CANONICAL FORM AND
APPLICATIONS

6.1 Introduction

In this chapter we elaborate upon the investigations into similarity which were begun in
Chapter 5 and bring our understanding of the matter to a satisfactory and elegant conclusion
in the presentation of the “Jordan1 canonical form.” This term refers to a special form that
a matrix may be transformed into under similarity.

We saw in Chapter 5 that the similarity transformation of a matrix into a special form
is of interest from the point of view of applications and that problems of transforming a
matrix under similarity are quite interesting in themselves. The diagonalization of symmetric
matrices was applied to quadratic forms in Section 5.6 and to the inertia tensor in Section
5.7. We will see in Section 6.3 that the Jordan canonical form is of use in solving systems of
differential equations.

It would be convenient if every real matrix were orthogonally similar to a diagonal matrix,
but unfortunately, it is only the symmetric matrices that have this property. In problems
involving similarity, say similarity to an upper triangular matrix, factorization of the char-
acteristic polynomial is always a stumbling block and so any result must carry along the
necessary assumptions regarding it. It has been proved that there is no “quadratic formula”
type method for solving polynomial equations of degree five and larger, and so we can feel
sure that this factorization must be assumed separately. Is there a best result that can be
stated, with reasonable assumptions, regarding similarity? An answer will soon appear.

In this section, we will review the theory and methods developed in Chapter 5 regarding
similarity, diagonalization, eigenvalues and eigenvectors, and the characteristic and minimum
polynomials. In addition, we will consider several examples and present the definition of the
Jordan block, a fundamental unit in the discussion that follows.

1It is named for the French mathematician Camille Jordan (1838-1922).
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REVIEW

Let A be an n × n matrix. We will use the notation of Chapter 5 for the characteristic and
minimum polynomials of A, and we will rely on the definitions of eigenvalue and eigenvector
from that same chapter.

6.1.1 Summary of Previous Results:

(a) The eigenvalues of A are the roots of the characteristic polynomial, pA(λ), of A. To
find an eigenvector of A corresponding to the eigenvalue λ0, one finds a solution of the
homogeneous system (A − λ0I)X = 0. (Theorem 5.2.1)

(b) A is similar to a diagonal matrix if and only if A has n linearly independent eigenvectors.
If X1, . . . , Xn are independent eigenvectors corresponding to the eigenvalues λ1, . . . , λn

and S = [X1 . . . Xn], then S is nonsingular and S−1AS = diag(λ1, . . . , λn). (Theorem
5.3.1)

(c) If A is a real matrix and pA(λ) factors completely or A is a complex matrix, then A

is orthogonally similar (resp., unitarily similar) to an upper triangular matrix. The
eigenvalues of an upper triangular matrix are the entries on the diagonal. (Schur’s
Theorem, Theorem 5.4.2)

(d) A is a real symmetric matrix if and only if A is orthogonally similar to a diagonal
matrix. In this case, the eigenvalues of A are real. (Corollary 5.4.1 (the Principal Axes
Theorem) and Theorem 5.2.4)

(e) A is a hermitian matrix over the complex numbers if and only if A is unitarily similar
to a diagonal matrix and the eigenvalues of A are real. (Corollary 5.4.2 and Theorem
5.2.4)

(f) Eigenvectors corresponding to distinct eigenvalues of A are linearly independent. If A

is hermitian or real symmetric, then eigenvectors corresponding to distinct eigenvalues
are orthogonal. (Theorem 5.2.3 and Theorem 5.4.3)

(g) A matrix satisfies its characteristic polynomial; that is, pA(A) = 0. (Theorem 5.5.1
(the Cayley-Hamilton Theorem))

(h) The monic polynomial mA(λ) of least degree satisfying mA(A) = 0 is the minimal
polynomial of A. If pA(λ) = (a1−λ)m1 · · · (as−λ)ms , then mA(λ) = (a1−λ)n1 · · · (as−
λ)ns , where 1 ≤ ni ≤ mi for i = 1, . . . , s. That is, mA(λ) is a factor of pA(λ) and mA(λ)
contains each of the linear factors of pA(λ). (Definition, Theorem 5.5.2, and Theorem
5.5.3)

(i) Similar matrices have the same minimum and characteristic polynomials. In particular,
similar matrices have the same eigenvalues. (Theorem 5.2.2 and Exercise 7 of section
5.5)

Having reviewed these facts from Chapter 5, let us consider some easy examples to gain
some experience with and appreciation for the theory we have just reviewed.



221

6.1.2 Examples

Example 6.1.1. (a) Let A =

[

1 1
0 2

]

. Then A is upper triangular and so the eigenvalues

of A are 1 and 2 (See part (c) of the Summary). Since the eigenvalues of A are distinct,
the corresponding eigenvectors are linearly independent (See part (f) of the Summary),
and so A is similar to the diagonal matrix diag(1, 2) by part (b) of the Summary.

(b) Let A =

[

1 1
0 1

]

. Then the only eigenvalue of A is 1 and it has multiplicity 2. Now

A−1I has rank 1. It follows that there are at most 2−1 = 1 independent eigenvectors,
and so, A is not similar to a diagonal matrix (See part (b) of the Summary).

(c) Let A =

[

0 1
−1 0

]

. Then pA(λ) = λ2+1 and so the characteristic polynomial does not

factor completely over the real numbers. It follows that A is not similar to a diagonal
matrix over the real numbers. However, considering A as a matrix over the complex
numbers, pA(λ) factors as pA(λ) = (λ − i)(λ + i). Thus A has two distinct complex
eigenvalues and so there is a complex matrix S with:

S−1AS =

[

i 0
0 −i

]

(d) Let A =

[

3 1
1 7

]

. Then A is symmetric and so A is similar to a real diagonal matrix

(See Summary part (d)).

(e) Let A =

[

1 1 − i

1 + i 7

]

. Then A is a hermitian matrix and so A is similar to a real

diagonal matrix (See Summary part (e)).

�

We will consider now the fundamental elements that make up the Jordan canonical form
of a matrix.

JORDAN BLOCKS

The reader might recall that in both the “diagonalization” process and the “upper trian-
gularization” process, the order in which the eigenvalues occurred on the diagonal of the
resulting matrix was arbitrary in that any order desired could be obtained. The order could
be controlled by choosing the eigenvectors in the proper order. So, for example, if a is an
eigenvalue of A of multiplicity m, one could arrange to have a appear in the first m entries
of the resulting similar upper triangular matrix.

We consider now a special type of matrix that has a single eigenvalue. We will see in
Section 6.2 that any matrix (with pA(λ) factoring completely) is similar to a matrix with
these special matrices on the diagonal.
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A Jordan block is an m × m matrix J of the form

J =











a 1 0 . . . 0 0
0 a 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 a











.

We say that a is the eigenvalue associated with J , and we see that in the matrix J , each
entry on the diagonal is an a and each entry on the “superdiagonal” (the entries above the
diagonal) is a 1. All other entries are 0. For example,

[3],

[

2 1
0 2

]

, and





−1 1 0
0 −1 1
0 0 −1





are Jordan blocks, but

[

2 1
0 1

]

and





−1 1 0
0 −1 0
0 0 −1





are not Jordan blocks. It is not difficult to calculate the minimum and characteristic poly-
nomials for a Jordan block.

Theorem 6.1.1. Let J be an m×m Jordan block with eigenvalue a. Then pJ(λ) = (−1)m(λ−
a)m and mJ(λ) = (λ − a)m. (For a Jordan block the characteristic and minimum polynomials

are equal, except possibly for sign.)

Proof. Since J is upper triangular, we see that

pJ(λ) = |J − λI| = (a − λ)m = (−1)m(λ − a)m.

By previous results, we know that mJ(λ) is a factor of pJ(λ) and so mJ(λ) = (λ−a)k, where
1 ≤ k ≤ m and k is the least integer satisfying

mJ(J) = (J − aI)k = 0.

Now

J − aI =















0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1
0 0 0 . . . 0 0















and we see that



223

(J − aI)2 =



















0 0 1 0 . . . 0 0
0 0 0 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 1
0 0 0 0 . . . 0 0
0 0 0 0 . . . 0 0



















...

(J − AI)m−1 =











0 . . . 0 1
0 . . . 0 0
...

...
. . .

...
0 . . . 0 0











(J − aI)m = (J − aI)(J − aI)m−1

= 0.

From this we see that mJ(λ) = (λ − a)m.

Now let us consider the eigenvectors associated with an m × m Jordan block J with
eigenvalue a. Since

J − aI =















0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1
0 0 0 . . . 0 0















,

it is not hard to see that the first m−1 row vectors are linearly independent and that J −aI

has rank m − 1. From this we see that J has only m − (m − 1) = 1 linearly independent
eigenvectors. Let us find conditions under which an m × m matrix A is similar to a Jordan
block.

Let A be an m×m matrix and assume A is similar to the Jordan block J with a on the
diagonal. Then since similar matrices have the same characteristic polynomials, pA(λ) =
(a − λ)m. Let S be the nonsingular matrix with S−1AS = J and assume S = [X1 . . . Xm],
where Xj is the j-th column vector of S. Then we get AS = SJ and so

A[X1 . . . Xm] = [X1 . . . Xm]















a 1 0 . . . 0
0 a 1 . . . 0
0 0 a . . . 0
...

...
...

. . .
...

0 0 0 . . . a















.

It follows that
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[

AX1 AX2 . . . AXm

]

=
[

aX1 X1 + aX2 X2 + aX3 . . . Xm−1 + aXm

]

and so

AX1 = aX1

AX2 = X1 + aX2

...

AXm = Xm−1 + aXm.

Rewriting this we obtain

(A − aI)X1 = 0

(A − aI)X2 = X1

(A − aI)X3 = X2

...

(A − aI)Xm = Xm−1.

Notice that X1 is an eigenvector. The other vectors X2, . . . , Xm are called generalized
eigenvectors, and X1, . . . , Xm is called a Jordan basis. This proves one part of the
following theorem.

Theorem 6.1.2. An m×m matrix A is similar to an m×m Jordan block J with eigenvalue

a if and only if there are independent m × 1 column vectors X1, . . . , Xm satisfying

(A − aI)X1 = 0

(A − aI)X2 = X1

(A − aI)X3 = X2

...

(A − aI)Xm = Xm−1.

(A Jordan block corresponds to a string of generalized eigenvectors.)

Proof. See Exercise 11.

Example 6.1.2. Let A =

[

3 1
−1 1

]

. Then pA(λ) = (λ − 2)2, so λ = 2 is an eigenvalue of

multiplicity 2. The rank of A − 2I =

[

1 1
−1 −1

]

is 1 and so there is only one independent

eigenvector. It follows that A is not similar to a diagonal matrix. Let X1 =

[

1
−1

]

. Then X1
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is an eigenvector of A associated with the eigenvalue λ = 2, and there is no other eigenvector
independent from X1. Let us attempt to find a vector X2 so that X1, X2 forms a Jordan
basis. We need to solve the equation (A − 2I)X2 = X1 or

[

1 1
−1 −1

] [

x

y

]

=

[

1
−1

]

.

We see that X2 =

[

1
0

]

is a solution. Now let S = [X1X2] =

[

1 1
−1 0

]

. Then

S−1AS =

[

2 1
0 2

]

,

which is a Jordan block.

�

Exercises

For each of the matrices in Exercises 1 - 5 determine which are similar to diagonal matrices.
Give reasons for your conclusion.

1.

[

0 2
1 1

]

2.

[

3 7
7 −2

]

3.

[

1 0
2 1

]

4.





−1 2 1
0 1 1
1 0 2





5.





1 i 1 − i

−i 3 1
1 + i 1 2





6. Which of the following matrices are Jordan blocks? Give reasons.

(a)

[

1 1
0 2

]

(b) [2]

(c)

[

−1 1
0 −1

]

(d)

[

2 0
0 2

]

(e)





1 0 0
0 1 1
0 0 1





7. Find a Jordan block J that is similar to the matrix A =

[

1 −1
1 3

]

.

8. Find a Jordan block J that is similar to the matrix A =





1 0 0
1 1 1
1 0 1



 .

9. For the matrices A and J in Exercise 7, find a matrix S such that S−1AS = J.

10. For the matrices A and J in Exercise 8, find a matrix S such that S−1AS = J.

11. Prove the remaining part of Theorem 6.1.2.
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12. Let A and S = [X1X2X3] be 3 × 3 matrices and assume that

S−1AS =





2 1 0
0 2 1
0 0 2



 .

Write the relationships satisfied by the matrix A and the column vectors of S.

13. Follow the instructions in Exercises 12 assuming that

S−1AS =





2 1 0
0 2 0
0 0 2



 .

6.2 The Jordan Canonical Form

As we have observed before, not every matrix is similar to a diagonal matrix. By Theorem
5.4.2, we know that if the characteristic polynomial of a matrix A factors completely, then
A is similar to an upper triangular matrix. One wonders if this is the best result that can be
obtained. The answer is “no” and in this chapter we investigate this “closest-to-diagonal”
matrix that can be obtained by similarity transformations.

Let A be an n × n matrix and let S be the set of all matrices that are similar to A. If
the characteristic polynomial of A, pA(λ), factors completely, then we know that A is similar
to an upper triangular matrix U . But this upper triangular matrix U is not unique. For

example, suppose A =

[

1 1
0 2

]

. Then A itself is upper triangular, and, of course, A is

similar to itself so that A ∈ S. But A has two distinct eigenvalues (1 and 2) so that A is

similar to the diagonal matrix D =

[

1 0
0 2

]

. It follows that D ∈ S and so D is a second

upper triangular matrix in S. Since A is also similar to the diagonal matrix D′ =

[

2 0
0 1

]

,

one can see that “absolute” uniqueness is probably impossible to achieve.
The following theorem identifies a “closest-to-diagonal” matrix J in the class S of matrices

that are similar to a given matrix A, and states that this matrix J is unique (more or less).
Because of this, J is called a canonical form, and being named after its founder, it is called
the Jordan canonical form. The matrix J is called the Jordan canonical form “of A,” and
J is said to be “in” Jordan canonical form. In this context the word “canonical” has nothing
to do with church law, but rather carries the implication of “simplest” and “unique.” The
proof is omitted here, but outlined in Appendix F.

Theorem 6.2.1. Let A be an n×n matrix and assume that pA(λ) factors completely. Then

A is similar to a matrix J of the form

J =











J1 0 . . . 0
0 J2 . . . 0
...

...
. . .

...

0 0 . . . Jk











,
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where J1, . . . , Jk are Jordan blocks. The matrix J is unique except for the order of the blocks

J1, . . . , Jk, which can occur in any order. (If the characteristic polynomial factors completely,

the matrix is similar to a matrix in Jordan form.)

The above theorem is an “existence” theorem in that it states the existence of a quantity,
J in this case, but offers no help in finding it. There are not many parameters in the
make-up of the matrix J . We need to know how many blocks, the size of the blocks, and
the eigenvalue associated with the blocks. These parameters may often be determined by
investigating properties of the original matrix A.

6.2.1 PROPERTIES OF THE JORDAN FORM

It is, in general, difficult to find the Jordan canonical form of a matrix, but knowledge
of certain elementary facts simplifies the task. In the following discussion we will assume
that A is an n × n matrix and the characteristic polynomial of A factors completely, say
pA(λ) = (a1 − λ)m1 . . . (as − λ)ms , where a1, . . . , as are distinct. Further, let the minimum
polynomial of A be mA(λ) = (λ − a1)

n1 . . . (λ − as)
ns . Let J be the Jordan canonical form

of A, and assume J1, . . . , Jk are the Jordan blocks of J.

Since J and A are similar they have the same characteristic polynomial, and since J is
upper triangular, the eigenvalues of J lie on the diagonal. From this it is easy to see that
the following theorem is true.

Theorem 6.2.2. The sum of the orders of the blocks in which ai occurs on the diagonal is

mi; that is, ai occurs on the diagonal of J mi times. (An eigenvalue of multiplicity m occurs

m times on the diagonal of the Jordan form.)

Now let S be a nonsingular matrix such that S−1AS = J , or AS = SJ. If S = [X1 . . . Xn],
where Xj is the j-th column of S, then X1, . . . , Xn are linearly independent and we have

AS =
[

AX1 . . . AXn

]

= SJ

=
[

X1 . . . Xn

]







J1 . . . 0
...

. . .
...

0 . . . Jk







=
[

a1X1 X1 + a1X2 . . . Xr − 1 + a1Xr a2Xr + 1 Xr + 1 + a2Xr + 2 . . .
]

,

where ai is the eigenvalue associated with Ji and J1 is r × r. If we let Ai = A − aiI and if
we equate the columns of AS and SJ , we have

AX1 = a1X1 =⇒ A1X1 = 0 A2Xr + 1 = 0
AX2 = X1 + a1X2 =⇒ A1X2 = X1 A2Xr + 2 = Xr+1

...
...

...
...

AXr = Xr−1 + a1Xr =⇒ A1Xr = Xr−1 etc.
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A basis of the above form is called a Jordan basis. From the above computation one
sees that X1, Xr+1, . . . are linearly independent eigenvectors and there is one of them for
each Jordan block of J . We have shown the following theorem:

Theorem 6.2.3. The number of blocks associated with the eigenvalue ai is equal to the

number of linearly independent eigenvectors associated with ai. (There is a block in J for

each independent eigenvector.)

Although it is harder to see, the following also holds:

Theorem 6.2.4. The order of the largest block associated with ai is ni, the exponent of

(λ− ai) in mA(λ). (The largest block with a given eigenvalue is multiplicity of the eigenvalue in

the minimum polynomial.)

Proof. By assumption, mA(λ) = (λ − a1)
n1 . . . (λ − as)

ns is the minimum polynomial of A

and since similar matrices have the same minimum polynomial (See Exercise 7, Section 5.5),
mJ(λ) = mA(λ). Notice what happens when one multiplies matrices (assuming the products
are defined) that are in “block-diagonal form”:







A1 . . . 0
...

. . .
...

0 . . . Ak













B1 . . . 0
...

. . .
...

0 . . . Bk






=







A1B1 . . . 0
...

. . .
...

0 . . . AkBk






.

Assume now that J1 is the largest block associated with the eigenvalue a1 and that J1 is
r × r. Recall that by Theorem 6.1.1, the minimum polynomial of J1 is (λ − a1)

r. That is, r

is the least power of (J1 − a1I) that is the zero matrix. Now substitute J into mJ(λ) and
apply these observations:

mJ(J) = (J − a1I)n1 . . . (J − a1I)ns

=







J1 − a1I . . . 0
...

. . .
...

0 . . . Jk − a1I







n1

. . .







J1 − asI . . . 0
...

. . .
...

0 . . . Jk − asI







ns

=







(J1 − a1I)n1 . . . 0
...

. . .
...

0 . . . (Jk − a1I)n1






. . .







(J1 − asI)ns . . . 0
...

. . .
...

0 . . . (Jk − asI)ns







=







(J1 − a1I)n1 . . . (J1 − asI)ns . . . 0
...

. . .
...

0 . . . (Jk − a1I)n1 . . . (Jk − asI)ns






.

Now since mJ(J) = 0, all blocks on the diagonal of this last matrix must be zero. It
follows that

(J1 − a1I)n1 . . . (J1 − asI)ns = 0.
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But a1 6= a2, . . . , as, and so each of the terms (J1 − a2I), . . . , (J1 − asI) have nonzero
entries on their diagonals. It follows that (J1 − a1I)n1 = 0, and so n1 = r, the order of J1.
Now J1 was assumed to be the largest block associated with a1 and so if J2 also has the
eigenvalue a1, (J2−a1I)n1 = 0. But n1 is the least integer satisfying this condition, so n1 = r

and the theorem is proved since the order of the blocks may be arbitrarily chosen.

6.2.2 FINDING THE JORDAN FORM

While it is not in general easy to find the Jordan canonical form of a matrix, the above results
provide enough information that it is possible to determine the Jordan form in certain cases.
Finding the characteristic and minimum polynomials is the first step. Next, knowing the
nature of the associated eigenvectors provides further clues. Often these two steps prove
sufficient, but in other cases, one must try to find a Jordan basis. The following examples
illustrate the various possibilities.

Example 6.2.1. (a) Assume that A is a matrix such that:

pA(λ) = (1 − λ)3(2 − λ)2

mA(λ) = (λ − 1)2(λ − 2).

Then if J is the Jordan canonical form of A, we know by Theorem 6.2.2 that 1 appears
three times on the diagonal of J and 2 appears twice. By Theorem 6.2.4, the order of
the largest block associated with the eigenvalue 2 is 1. From this we can see that

J =













[

1 1
0 1

]

0

[1]
[2]

0 [2]













.

Here we have shown the Jordan blocks that lie on the diagonal and represent the 0’s
that lie outside the blocks by a single 0.

(b) If A is such that

pA(λ) = (1 − λ)3(2 − λ)2 = −mA(λ),

then the largest block with a 2 on the diagonal has order 2 and the largest block with
a 1 on the diagonal has order 3. From this we see that the Jordan canonical form is:

J =

















1 1 0
0 1 1
0 0 1



 0

0

[

2 1
0 2

]













.
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(c) Assume that A is a 4 × 4 matrix with

pA(λ) = (1 − λ)4 and mA(λ) = (λ − 1)2.

By Theorem 6.2.4, the largest Jordan block associated with the eigenvalue 1 is 2 × 2.
This leaves two possibilities. If A has three independent eigenvectors, then there are
three blocks in the Jordan canonical form J and

J =









[

1 1
0 1

]

0

[1]
0 [1]









.

On the other hand, if A has only two independent eigenvectors, then J has two Jordan
blocks on its diagonal and so

J =









[

1 1
0 1

]

0

9

[

1 1
0 1

]









.

(d) Knowing the characteristic and minimum polynomials and the number of linearly in-
dependent eigenvectors may not be sufficient to determine the Jordan canonical form
of a matrix. Suppose that A is a 7 × 7 matrix with

pA(λ) = (1 − λ)7 and mA(λ) = (λ − 1)3.

If A has three linearly independent eigenvectors, then the Jordan canonical form J

of A must have three Jordan blocks. Because of the minimum polynomial of A, the
largest block must be 3 × 3. These conditions don’t determine J . J could consist of a
3 × 3 Jordan block and two 2× 2 blocks or J could have two 3 × 3 Jordan blocks and
one 1 × 1 block.

(e) Let A =





1 1 0
1 1 1
0 −1 1



 . Then pA(λ) = (1 − λ)3 and so λ = 1 is the only eigenvalue of

A. Let us examine the eigenvectors of A in order to determine the Jordan canonical
form of A. Consider

(A − 1I)X =





0 1 0
1 0 1
0 −1 0









x1

x2

x3



 = 0.

We see that x2 = 0 and x1 = −x3, and so X1 =





1
0
−1



 is a solution and there is only

one linearly independent solution. It follows from Theorem 6.2.3 that there is only one
Jordan block in the Jordan canonical form J of A and so
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J =





1 1 0
0 1 1
0 0 1



 .

To make the example interesting, let us find a matrix S such that S−1AS = J . From
the previous discussion we know that we want to take S = [X1X2X3], where X1, X2, X3

is a Jordan basis; that is, (A − I)X1 = 0, (A − I)X2 = X1 and (A − I)X3 = X2. We
compute solutions to these equations:

(A − I)X1 = 0; take X1 =





1
0
−1





(A − I)X2 = X1; take X2 =





1
1
−1



 or





0
1
0





(A − I)X3 = X2; take X3 =





1
1
0



 or





0
1
1



 .

Then X1, X2, X3 are linearly independent and so they form a Jordan basis. If we let

S =





1 1 1
0 1 1
−1 −1 0



 ,

then

S−1 =





1 −1 0
−1 1 −1
1 0 1





and S−1AS = J.

(f) Finding a Jordan basis is not always straightforward. Suppose that

A =





3 1 0
−1 1 0
1 1 2



 .

The characteristic polynomial is (2 − λ)3 and we see that

A − 2I =





1 1 0
−1 −1 0
1 1 0



 ,
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and so A−2I has rank 1. This means that there are two independent eigenvectors and
therefore two Jordan blocks, a 2 × 2 block and a 1 × 1 block. To find a Jordan basis
we must find X1, X2, X3 satisfying

(A − 2I)X1 = 0

(A − 2I)X2 = X1

(A − 2I)X3 = 0

Solving for eigenvectors X1 and X3, consider

(A − 2I)X =





1 1 0
−1 −1 0
1 1 0









x

y

z



 =





0
0
0



 .

We see that X1 =





0
0
1



 and X3 =





1
−1
0



 are obvious choices. Now let’s find X2.

We must solve

(A − 2I)X2 = X1

or

(A − 2I)X2 =





1 1 0
−1 −1 0
1 1 0









x

y

z



 =





0
0
1



 .

Considering the first and last rows, we see that there’s no solution. Perhaps we should
switch eigenvectors and try to solve

(A − 2I)X2 = X3

or

(A − 2I)X2 =





1 1 0
−1 −1 0
1 1 0









x

y

z



 =





1
−1
0



 .

Again, no solution. The theorem above states that our matrix A is similar to a matrix
in Jordan form and it implies the existence of a Jordan basis. The theorem doesn’t
guarantee that the Jordan basis will be easy to find! We need to replace the eigenvector
X1 by another eigenvector so that (A − 2I)X2 = X1 does have a solution. Let’s let

X1 =





1
−1
1



 .
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Then X1 is and eigenvector and X2 can be chosen to be





1
0
0



 . The matrix S =





1 1 0
−1 0 0
1 0 1



 will properly transform the matrix A to its Jordan form.

�

Exercises

In Exercises 1 - 6, find the Jordan canonical form of the matrix satisfying the given conditions.

1. A is a 3 × 3 matrix with pA(λ) = (−2 − λ)3 and mA(λ) = (λ + 2)2.

2. A is a 3 × 3 matrix with pA(λ) = (2 − λ)3 and mA(λ) = (λ − 2)3.

3. A is a 3 × 3 matrix with pA(λ) = (2 − λ)3 and (A − 2I)2 = 0, but A 6= 2I.

4. A is a 5 × 5 matrix with pA(λ) = (2 − λ)3(3 − λ)2 and mA(λ) = (λ − 2)2(λ − 3).

5. A is a 6× 6 matrix with pA(λ) = (2− λ)4(3− λ)2 and mA(λ) = (λ− 2)2(λ− 3)2. The
matrix A − 2I has rank 4.

6. A is a 6 × 6 matrix with pA(λ) = (1 − λ)4(−2 − λ)2 and mA(λ) = (λ + 2)2(λ − 1)2.
The matrix A − I has rank 3.

Find the Jordan canonical form of the matrices in Exercises 7 - 12.

7.

[

1 1
1 1

]

8.

[

1 0
1 0

]

9.





2 1 0
−1 0 0
0 0 2





10.





1 0 1
1 1 1
0 0 1





11.





0 1 0
−8 6 1
−1 −1 −1





12.





1 0 1
1 1 2
0 0 1





13. Let A =





1 1 0
0 1 0
1 −1 2



. Find a matrix S such that S−1AS is in Jordan canonical form.

14. Find the Jordan canonical form J of





1 0 1
1 1 2
0 0 1



 and find a nonsingular matrix S with

S−1AS = J.

15. Give an example of a 3 × 3 matrix A satisfying: (a) λ = 2 is the only eigenvalue of
A, and (b) there are two linearly independent eigenvectors of A associated with this
eigenvalue.
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16. Give an example of a 3 × 3 matrix A satisfying: (a) λ = 1 is the only eigenvalue of
A, and (b) there is only one linearly independent eigenvector of A associated with this
eigenvalue.

17. Let A be a 3 × 3 matrix satisfying: (a) λ = 1 is the only eigenvalue of A, and (b)
there are three linearly independent eigenvectors of A associated with the eigenvalue
of λ = 1. Show that A = I.

6.3 Systems of Constant Coefficient Differential Equa-

tions (optional)

The Jordan canonical form of a matrix is of use in solving differential equations. In most
elementary courses in differential equations, a general discussion of systems of first order,
constant coefficient linear differential equations is not included. This omission is mainly
due to the unavailability of the Jordan canonical form which is necessary in solving such
systems. It seems appropriate to include a discussion of these systems here. In what follows,
the reader will find some background in differential equations helpful, but not absolutely
necessary.

By a system of first order constant coefficient linear differential equations we
mean a system of the form

x′

1 = a11x1 + . . . + a1nxn + f1(t)
...

...
x′

n = an1x1 + . . . + annxn + fn(t)

(6.3.1)

Of course a solution of System 6.3.1 is a collection of functions x1(t), . . . , xn(t) that satisfy
the equations on some interval.

These systems of equations arise naturally: If we consider the n-th order constant coef-
ficient linear differential equation

y(n) + an−1y
(n−1) + . . . + a1y

′ + a0y = g(t), (6.3.2)

then this equation can be “reduced” to a system of the form 6.3.1 by making the substitutions

x1 = y

x2 = y′

...
xn = y(n−1)

(6.3.3)

Using the substitutions 6.3.3 in 6.3.2 we obtain

x′

1 = x2

x′

2 = x3
...

x′

n−1 = xn

x′

n = −an−1xn − . . . − a1x2 − a0x1 + g(t),

(6.3.4)
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which is a system of equations of the form 6.3.1.
A further natural occurrence of linear systems of differential equations arises in applying

Kirchhoff’s laws (see Section 1.7) to electrical networks involving inductors and capacitors,
applying laws of motion to coupled spring-mass systems, and in other physical situations.
To solve a first order system of linear differential equations we will need to be able to solve
a single first order equation. We start with a brief review.

6.3.1 SOLVING A FIRST ORDER EQUATION

The general first order linear differential equation is an equation of the form

y′ + f(t)y = g(t), (6.3.5)

where f and g are assumed to be continuous. This equation can be solved by using the
integrating factor

p(t) = e f(t)dt (6.3.6)

If both sides of Equation 6.3.5 are multiplied by p(t), we obtain

y′p(t) + f(t)yp(t) = g(t)p(t). (6.3.7)

But notice that

]
d

dt
(yp(t)) = y′p(t) + yp′(t)

= y′p(t) + yf(t)p(t)
(6.3.8)

since

p′(t) = e f(t)dt = p(t)f(t).

Now combining 6.3.7 and 6.3.8, we get

d

dt
(yp(t)) = g(t)p(t);

integrating, we obtain

yp(t) =

∫

g(t)p(t)dt + C

or

y =
1

p(t)

∫

g(t)p(t)dt +
C

p(t)
. (6.3.9)

The assumption of continuity of the functions f(t) and g(t) guarantees that the integrals
in 6.3.6 and 6.3.9 exist. The solution 6.3.9 is called the general solution of 6.3.5 and it
involves the unknown constant C. An initial condition of the form y(a) = b determines the
value of C and gives the unique solution that satisfies this condition.
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Example 6.3.1. Consider the equation

y′ + 2ty = t.

Applying the above method we multiply by the integrating factor

p(t) = e 2tdt = et2

and obtain

y′et2 + 2tet2y = tet2 .

Rewriting this equation we get

d

dt
yet2 = tet2

and integrating both sides with respect to t gives

yet2 =

∫

tet2dt =
et2

2
+ C.

It follows that

y =
1

2
+ Ce−t2 .

If a solution is desired that satisfies y(0) = 2, then we get

2 =
1

2
+ Ce0

so that C =
3

2
and we obtain the specific solution

y =
1

2
+

3

2
e−t2 .

�

Just as matrix notation simplified the expression and solution of systems of linear equa-
tions, the same holds true for systems of differential equations.

6.3.2 MATRIX NOTATION

Let us now return to the problem of finding a solution to the system of equations 6.3.1. We
introduce matrix notation to write Equations 6.3.1 in a more compact “matrix” differential
equation. Let

X = X(t) =







x1(t)
...

xn(t)






,
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A = [aij],

and

F = F (t) =







f1(t)
...

fn(t)






.

For a “matrix” function X(t) we define the derivative X ′ of X by

X ′(t) =







x′

1(t)
...

x′

n(t)






.

Using this notation, the system 6.3.1 can then be expressed as a matrix differential
equation of the form

X ′ = AX + F (t) (6.3.10)

6.3.3 USING THE JORDAN FORM

The first step in solving the matrix equation 6.3.10 is as follows: A is similar to a matrix J

in Jordan canonical form (J may have complex numbers on its diagonal), say S−1AS = J

or A = SJS−1. Then

X ′ = SJS−1X + F (t)

or

S−1X ′ = JS−1X + S−1F (t).

Let Y = S−1X and G(t) = S−1F (t). Then Equation 6.3.10 becomes

Y ′ = JY + G(t). (6.3.11)

Now let J =







J1 . . . 0
...

. . .
...

0 . . . Jk






, where each Ji is Jordan block. Assume that Ji is ni × ni

and let Y =







Y1
...

Yk






and G(t) =







G1(t)
...

Gk(t)






, where Yi and Gi(t) are ni × 1. Then we get
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Y ′ =







Y ′

1
...

Y ′

k







=







J1 . . . 0
...

. . .
...

0 . . . Jk













Y1
...

Yk






+







G1(t)
...

Gk(t)







=







J1Y1 + G1(t)
...

JkYk + Gk(t)






.

From this we see that we need only solve the systems

Y ′

i = JiYi + Gi(t) (6.3.12)

for i = 1, . . . , k, where each Ji is a Jordan block. Given the solutions Yi, let Y =







Y1
...

Yk







and take X = SY . X is then the solution of 6.3.10 and so we need only consider a system
of equations of the form

Z ′ = JZ + H(t), (6.3.13)

where J is a Jordan block. Let Z =







z1
...

zm






, H(t) =







h1(t)
...

hm(t)






, and J =



















a 1 0 . . . 0 0
0 a 1 . . . 0 0
0 0 a . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . a 1
0 0 0 . . . 0 a



















.

The system 6.3.12 is then equivalent to

z′1 = az1 + z2 + h1(t)
...

z′m−1 = azm−1 + zm + hm−1(t)
z′m = azm + h(t).

(6.3.14)

The problem of solving a system of differential equations has now been reduced to solving
a system associated with a single Jordan block. We tackle that problem next.

6.3.4 SOLVING WHEN JORDAN BLOCKS OCCUR

Solving systems determined by Jordan blocks as in 6.3.14 is relatively straightforward. We
start from the bottom and work up: solve the last equation for zm and substitute zm into
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the next to the last equation and solve for zm−1, and so forth.. At each step we need to solve
a constant coefficient first order linear differential equation of the form y′ − ay = f(t).

To solve y′ − ay = f(t), we proceed as before: Find the integrating factor e −adt = e−at.
Multiply the equation by the integrating factor and get

y′e−at − ae−aty = e−atf(t).

Notice that the left hand side of the equation is the derivative of ye−at, and so we have

d

dt
(ye−at) = e−atf(t).

Now we can integrate both sides to obtain

ye−at =

∫

e−atf(t)dt

and solve for y, obtaining y = eat
∫

e−atf(t)dt.

Example 6.3.2. Solve Z ′ =

[

2 1
0 2

]

Z +

[

et

e2t

]

. We must solve the system:

(a) z′1 = 2z1 + z2 + et

(b) z′2 = 2z2 + e2t.

1. Solve (b) first: The integrating factor is e−2t; multiply and get

z′2e
−2tz2 =

d

dt
z2e

−2tz2 =
d

dt
z2e

−2t = e−2te2t = 1.

Integrating, we get z1e
−2t =

∫

1dt − t + C, so that z2 = te2t + Ce2t.

2. Substitution into (a) gives

z′1 = 2z1 + te2t + Ce2t + et;

now solve for z1. The integrating factor is e−2t. Multiply, manipulate and get

z′1e
−2t − 2e−2tz1 =

d

dt
z1e

−2t = t + C + e−t.

Integrating, we get

z1e
−2t =

t2

2
+ Ct − e−t + C ′

or

z1 =
t2

2
e2t + Cte2t − et + C ′e2t.
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It follows that the general solution of the system of equations is:

z1 =
t2

2
e2t + Cte2t − et + C ′e2t

z2 = te2t + Ce2t.

If a solution satisfying the initial conditions z1(0) = 2, z2(0) = 3 is desired, we can solve

for C and C ′ : z2(0) = 0e2·0+Ce2·0 = 3, so C = 3. z1(0) =
0

2
e2·0+C ·0·e0−e0+C ′e0 = 2,

so C ′ = 1 and we get the following solution of the initial value problem:

z1 =
t2

2
e2t + 3te2t − et + e2t

z2 = te2t + 3e2t.

�

The above example illustrates only one step in a rather long and complicated process.
To illustrate the entire process, we will go through the details of the following example:

Example 6.3.3. Find the general solution of

x′

1 = 3x1 + x2 + x3 + 1

x′

2 = 2x1 + 2x2 + x3 + et

x′

3 = −6x1 − 3x2 − 2x3 + e2t.

We first formulate the problem in matrix form:

X ′ =





3 1 1
2 2 1
−6 −3 −2



X +





1
et

e2t





and calculate the Jordan canonical form J of the matrix

A =





3 1 1
2 2 1
−6 −3 −2



 .

Now pA(λ) = (1 − λ)3 and mA(λ) = (λ − 1)2 since (A − 1I)2 = 0. We see that

J =





1 1 0
0 1 0
0 0 1



 .

We will need to know the matrix S that satisfies S−1AS = J . Recall that S =
[

X1 X2 X3

]

, where X1, X2, X3 is a Jordan basis. Because of the form of J , these
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basis vectors must satisfy (A − I)X1 = 0, (A − I)X2 = X1, (A − I)X3 = 0. After some
experimentation, we get

X1 =





1
1
−3



 , X2 =





0
0
1



 , and X3 =





−1
1
1



 .

Thus S =





1 0 −1
1 0 1
−3 1 3



. Also, S−1 = −
1

2





−1 −1 0
−4 −2 −2
1 −1 0



 =
1

2





1 1 0
4 2 2
−1 1 0



 .

By the previous section, we must solve

Y ′ = JY + G(t),

where Y = S−1X and G(t) = S−1F (t) =











1

2
(1 + et)

2 + et + e2t

1

2
(et − 1)











. We let Y =





y1

y2

y3



 and solve

the system, which you will recall involves solving the systems determined by the blocks of
J . The 1 × 1 block gives the equation

y′

3 = y3 +
1

2
(et − 1).

The solution is y3 =
1

2
tet + Cet +

1

2
.

The 2 × 2 block gives the system

y′

1 = y1 + y2 +
1

2
(1 + et)

y′

2 = y2 + 2 + et + e2t.

Solving the second equation, we get

y2 = −2 + tet + e2t + C ′et.

Substituting into the first equation gives the equation

y′

1 − y1 = y2 +
1

2
(1 + et) = −

3

2
+ tet + e2t +

(

C ′ +
1

2

)

et.

Solving this equation we get:

y1 =
3

2
+

t2

2
et + e2t +

(

C ′ +
1

2

)

tet + C ′′et

=
3

2
+ et

(

t2

2
+

(

C ′ +
1

2

)

t + C ′′

)

+ e2t.
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We have found y1, y2 and y3 above and so we have determined Y . Now Y = S−1X, so
X = SY and so

X =





1 0 −1
1 0 1
−3 1 3















3

2
+ et

(

t2

2
+

(

C ′ +
1

2

)

t + C ′′

)

+ e2t

−2 + tet + e2t + C ′et

1

2
tet + Cet +

1

2











=

















1 + et

(

t2

2
+ C ′t + C ′′ − C

)

+ e2t

2 + et

(

t2

2
+ (C ′ + 1)t + C ′′ + C

)

+ e2t

−6 + et

(

−
3t2

2
− 3C ′t − 3C ′′ + C ′ + C

)

− 2e2t

















is the general solution of the original system of equations.
To find the specific solution that satisfies the initial conditions x1(0) = 0, x2(0) =

1, x3(0) = 1, substitute t = 0 and solve for C,C ′ and C ′′. We obtain the following sys-
tem of equations:

x1(0) = 0 = 1 + C ′′ − C + 1 or C ′′ − C = −2
x2(0) = 1 = 2 + C ′′ + C + 1 or C ′′ + C = −2
x3(0) = 1 = −6 − 3C ′′ + C ′ + C − 2 or −3C ′′ + C ′ + C = 9.

Solving the system of linear equations, we get C = 0, C ′ = 3, and C ′′ = −2. The specific
solution is then

X =

















1 + et

(

t2

2
+ 3t + −2

)

+ e2t

2 + et

(

t2

2
+ 4t − 2

)

+ e2t

−6 + et

(

−
3t2

2
− 9t + 9

)

− 2e2t

















.

�

Exercises

In Exercises 1 - 4, find an integrating factor and use it to find the general solution of the
given first order linear equation. Then find a specific solution which satisfies the given initial
condition.
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1. y′ − 2y = et, y(0) = 1

2. y′ + 3y = t, y(0) = −1

3. y′ − ty = t, y(0) = 0

4. y′ − t−1y = t2, y(1) = −1

In Exercises 5 and 6, express the systems in the form of a matrix equation, that is,
find matrices X,A, and F (t) with X ′ = AX + F (t).

5.

x′

1 = 2x1 + x2 + et

x′2 = 3x2 + e2t

6.

x′

1 = 3x1 + x2 + sin t

x′

2 = 2x1 − 2x2 + t

7. Find the general solution of

X ′ =

[

−1 1
0 −1

]

X +

[

t

et

]

and then find the specific solution that satisfies the following initial conditions: x1(0) =
1, x2(0) = −2.

8. Find the general solution of

X ′ =

[

2 1
0 2

]

X +

[

t2

t

]

and then find the specific solution that satisfies the following initial conditions: x1(0) =
−1, x2(0) = 0.

9. Solve the following initial value problem:

X ′ =





2 1 0
0 2 0
0 0 1



X +





1
0
0



 ,

x1(0) = 0, x2(0) = 1, x3(0) = 0.

10. Find the general solution of the following system of equations:

x′

1 = 2x1 − x2 + x3 + 1

x′

2 = x1 + x3 + et

x′

3 = x1 − 2x2 + 3x3 + e−t

11. Find the general solution of

X ′ =

[

−1 1
4 −1

]

X.
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