ECE511: Analysis of Random Signals

Spring 2014

Lecture 13 — 10, 20, 2014

Dr. Salim El Rouayheb

Scribe: Rawad Bitar

1 Overview

In the last lecture, we talked about Chebyshev's and Markov's inequalities. Then, we proved a weak version of the Law of large numbers before closing by defining the Moment Generating Function of a RV.

In this lecture, we will introduce Chernoff bound, define the characteristic function of a RV, give some examples and conclude by proving the Central Limit Theorem with examples.

2 Moment Generating Functions (MGF)

Recall that the moment generating function $\mathcal{M}_X(t)$ is by definition equal to $E(e^{tX})$ for $t \in \mathbb{C}$.

Example: Let $X \sim \text{Poisson}(\lambda)$, $P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$, $k = 0, 1, 2, \dots$

1. Find $\mathcal{M}_x(t)$.

$$\mathcal{M}_X(t) = E(e^{t\lambda}) = \sum_{k=0}^{\infty} e^{tk} P(X = k)$$

$$\mathcal{M}_X(t) = \sum_{k=0}^{\infty} e^{tk} e^{-\lambda} \frac{\lambda^k}{k!} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{(\lambda e^t)^k}{k!}$$

$$\mathcal{M}_X(t) = e^{-\lambda} e^{\lambda e^t}.$$

2. Find E(X) from $\mathcal{M}_x(t)$.

$$E(X) = \frac{\partial \mathcal{M}_X(t)}{\partial t} \mid_{t=0} = \lambda e^t e^{\lambda(e^t - 1)} \mid_{t=0} = \lambda.$$

3 Chernoff Bound

In this section, we introduce the Chernoff bound. Recall that to use Markov's inequality X must be positive.

Theorem 1. (Chernoff's bound) For any RV X,

$$P(X \ge a) \le e^{-at} \mathcal{M}_X(t) \ \forall \ t > 0.$$

In particular,

$$P(X \ge a) \le \min_{t} e^{-at} \mathcal{M}_X(t).$$

Proof. Apply Markov on $Y = e^{tX}$, but first recall that $P(X \ge a) = P(e^{tX} \ge e^{ta}) = P(Y \ge e^{ta})$, by Markov we get

$$P(Y \ge e^{ta}) \le \frac{E(Y)}{e^{ta}} = e^{-ta}E(Y)$$
$$P(X \ge a) \le e^{-ta}\mathcal{M}_X(t)$$

Example: Consider $X \sim N(\mu, \sigma)$ and try to bound $P(X \ge a)$ using Chernoff bound, this is an artificial example because we know the distribution of X.

From last lecture $\mathcal{M}_X(t) = e^{\mu t + \frac{\sigma^2 t^2}{2}}$ hence

$$P(X) \le \min_{t} e^{-at} e^{\mu t + \frac{\sigma^2 t^2}{2}} = \min_{t} e^{(\mu - a)t + \frac{\sigma^2 t^2}{2}}$$

Remark: You can check at home how the parameter t can affect the outer bound. For example pick $\mu=0, \sigma=1$ and change t; for t=0 you will get the trivial bound $P\leq 1$ and for $t\to\infty$ you will get $P\leq\infty$. See how it varies.

$$\min_{t} e^{(\mu - a)t + \frac{\sigma^{2}t^{2}}{2}} \Rightarrow \frac{\partial f(t)}{\partial t} = 0$$

$$\Rightarrow (\sigma^{2}t + \mu - a)e = 0$$

$$\Rightarrow t^{*} = \frac{a - \mu}{\sigma^{2}}$$

Which gives us the following:

$$P(X \ge a) \le e^{(\mu - a)t^* + \frac{\sigma^2 t^*}{2}}$$

$$P(X \ge a) \le e^{\frac{-(a - \mu)(\mu - a)}{\sigma^2} + \frac{\sigma^2 (a - \mu)^2}{2\sigma^4}}$$

$$P(X \ge a) \le e^{\frac{-(a - \mu)^2}{2\sigma^2}}$$

We can compare this result with the reality where we know that $P(X \ge a) = \int_a^\infty \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(x-\mu)^2}{2\sigma^2}} dx$.

4 Characteristic Function

In this section, we define a characteristic function and give some examples. The characteristic function of a RV is similar to a Fourrier transform of a function without the '-'.

Definition: X is a RV,

$$\Phi_X(w) = E(e^{jwX}) = \int_{-\infty}^{+\infty} f_X(x)e^{jwx}dx,$$
(1)

is called the characteristic function of X where j is the complex number $j^2 = -1$.

Example: Find the characteristic function of $X \sim \exp(\lambda)$. Recall that for $\lambda \geq 0$

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

Then

$$\Phi_X(w) = \int_0^\infty \lambda e^{-\lambda x} e^{jwx} dx$$
$$= \lambda \int_0^\infty e^{(jw-\lambda)x} dx$$
$$= \frac{\lambda}{jw-\lambda} \left[e^{(jw-\lambda)x} \right]_0^\infty$$

Since $\lambda \geq 0$ and jw is a unit quantity $\Rightarrow (jw - \lambda) \leq 0$ therefore $\lim_{x \to \infty} e^{(jw - \lambda)x} = 0$. Which results in

$$\Phi_X(w) = \frac{\lambda}{jw - \lambda}(0 - 1)$$

$$\Phi_X(w) = \frac{\lambda}{\lambda - jw}$$

Lemma 2. if X, Y are two independent RV and Z = X + Y then $\Phi_Z(w) = \Phi_X(w)\Phi_Y(w)$ and $\mathcal{M}_Z(t) = \mathcal{M}_X(t)\mathcal{M}_Y(t)$

Remark: To find the distribution of Z = X + Y it could be easier to find $\Phi_X(w)$, $\Phi_Y(w)$, multiply them and then invert the from "Fourrier" domain by integrating or by using tables of Fourrier inverse.

Example: Consider the example of problem 9 of homework 3:

Question: Let X_1 and X_2 be two independent RV such that $X_1 \sim N(\mu_1, \sigma_1)$ and $X_2 \sim N(\mu_2, \sigma_2)$ and let $X = aX_1 + bX_2$. Find the distribution of X.

Answer: Let $X_1' = aX_1$, $X_2' = bX_2$ it is clear that $X_1' \sim N(a\mu_1, a\sigma_1)$ and $X_2' \sim N(b\mu_2, b\sigma_2)$ and that $\Phi_X(w) = \Phi_{X_1'}(w)\Phi_{X_2'}(w)$.

$$\Phi_{X_1'}(w) = \dots = e^{a\mu_1 jw - \frac{a^2 \sigma_1^2 w^2}{2}}$$

$$\Phi_X(w) = e^{a\mu_1 jw - \frac{a^2 \sigma_1^2 w^2}{2}} e^{b\mu_2 jw - \frac{b^2 \sigma_2^2 w^2}{2}}$$

$$\Phi_X(w) = e^{j(a\mu_1 + b\mu_2)w - (a^2 \sigma_1^2 + b^2 \sigma_2^2)\frac{w^2}{2}}$$

Which implies that $X \sim N(a\mu_1 + b\mu_2, \sqrt{a^2\sigma_1^2 + b^2\sigma_2^2})$.

Fact 3. A linear combination of two independent Gaussian RV is a Gaussian RV.

5 Central Limit Theorem

In this section we state the central limit theorem and give a rigourous proof.

Theorem 4. Let X_1, X_2, \ldots, X_n be n independent RVs with $\mu_{X_i} = 0$ and $V(X_i) = 1 \ \forall i$ then

$$Z_n = \frac{X_1 + X_2 + \dots + X_n}{\sqrt{n}} \xrightarrow[n \to \infty]{} N(0,1)$$

In other words

$$\lim_{n\to\infty} P(Z \le z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-\frac{x^2}{2}} dx$$

This is for example a way to convert flipping a coin n times to a Gaussian RV (fig. 1,fig. 2).

$$X_i = \begin{cases} 0 & \text{if a tail is observed with } p = \frac{1}{2} \\ 1 & \text{if a head is observed with } 1 - p = \frac{1}{2} \end{cases}$$

And set $S_n = \frac{\sum_{i=0}^n X_i}{\sqrt{n}}$, notice that $S_n \in \{0, 1, \dots, \frac{n}{\sqrt{n}}\}$ and according to CLT $S_n \underset{n \to \infty}{\sim} N(0, 1)$.

CLT: says that no matter how far you are from the mean, the probability of X = x being outside $|x - \mu| \le \sqrt{n}$ decreases exponentially with n.

Remark: The RVs X_i have to be independent because if for example $X_i = X_1$ for $i \in \{2, 3, ..., n\}$ then

$$S_n = nX_i = \begin{cases} \sqrt{n} & \text{if } X_1 = 1\\ 0 & \text{if } X_1 = 0 \end{cases}$$

which does not converge to a Gaussian distribution when $n \to \infty$.

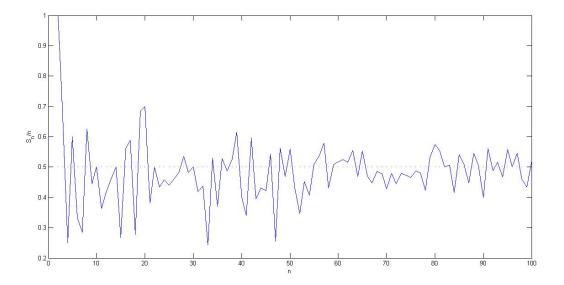


Figure 1: This is $\frac{S_n}{n}$ as a function of n, we can clearly see that when n grows $\frac{S_n}{n}$ goes to 0.5 for the equation of the example below for n goes to 100. Refer to section 6 for detailed code.

Proof. (of theorem 4)

$$\lim_{n \to \infty} \Phi_{Z_n}(w) = e^{-\frac{w^2}{2}} \Rightarrow f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

where this form of $\Phi_{Z_n}(w)$ is the characteristic function of a N(0,1) RV.

$$Z_{n} = \underbrace{\frac{X_{1}}{\sqrt{n}}}_{W_{1}} + \underbrace{\frac{X_{2}}{\sqrt{n}}}_{W_{2}} + \dots + \underbrace{\frac{X_{n}}{\sqrt{n}}}_{W_{n}}$$

$$\Phi_{Z_{n}}(w) = \Phi_{W_{1}}(w)\Phi_{W_{2}}(w)\Phi_{W_{3}}(w)\dots\Phi_{W_{n}}(w) = [\Phi_{W_{1}}(w)]^{n}$$

$$\Phi_{W_{1}}(w) = E(e^{wjW_{1}}) = E(e^{\frac{jwX_{1}}{\sqrt{n}}}) = \Phi_{X_{1}}(\frac{w}{\sqrt{n}})$$

Taylor expansion: Using the Taylor expansion of $\Phi_{W_1}(w)$ around 0 we get,

$$\Phi_{W_1}(w) = \Phi_{W_1}(0) + \Phi'_{W_1}(0) + \frac{\Phi''_{W_1}(0)}{2!} + \dots$$

.

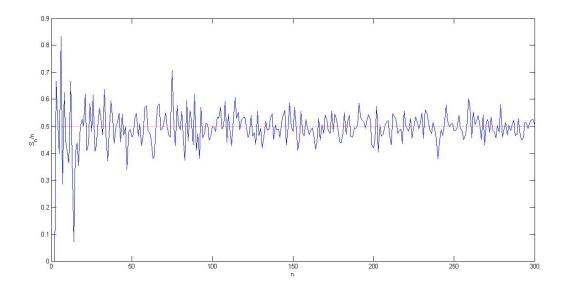


Figure 2: This is $\frac{S_n}{n}$ as a function of n, we can clearly see that when n grows $\frac{S_n}{n}$ goes to 0.5 for the equation of the example below for n goes to 300. Refer to section 6 for detailed code.

1. Find the value of $\Phi_{W_1}(0)$.

$$\Phi_{W_1}(0) = E(e^{\frac{jwX}{\sqrt{n}}}) \mid_{w=0}$$

$$= \int_{-\infty}^{+\infty} e^{\frac{j0X}{\sqrt{n}}} f_X(x) dx$$

$$= \int_{-\infty}^{+\infty} f_X(x) dx$$

$$= 1$$

2. Find the value of $\Phi'_{W_1}(0)$.

$$\Phi'_{W_1}(0) = \int_{-\infty}^{+\infty} \frac{jx}{\sqrt{n}} e^{\frac{j0X}{\sqrt{n}}} f_X(x) dx$$

$$= \frac{j}{\sqrt{n}} \int_{-\infty}^{+\infty} x f_X(x) dx$$

$$= \frac{j}{\sqrt{n}} E(X_1)$$

$$= 0$$

3. Find the value of $\Phi_{W_1}''(0)$.

$$\Phi_{W_1}''(0) = \frac{d^2 \Phi_{W_1}(w)}{dw^2}$$

$$= \int_{-\infty}^{+\infty} (\frac{jx}{\sqrt{n}})^2 e^{\frac{j0X}{\sqrt{n}}} f_X(x) dx$$

$$= \frac{-1}{n} \int_{-\infty}^{+\infty} x^2 f_X(x) dx$$

$$= \frac{-1}{n} (\underbrace{V(X)}_1 + \underbrace{E^2(X)}_0)$$

$$= \frac{-1}{n}$$

Hence, using these results and Taylor's expansion, $\Phi_{W_1}(w) = 1 - \frac{w^2}{2n}$. Therefore $\Phi_{Z_n}(w) = [1 - \frac{w^2}{2n}]^n$. Recall that $\log(1 - \epsilon) \simeq -\epsilon$, then

$$\log \Phi_{Z_n} = n \log \left(1 - \frac{w^2}{2n}\right)$$
$$\log \Phi_{Z_n} \simeq n\left(-\frac{w^2}{2n}\right)$$
$$\log \Phi_{Z_n} \simeq -\frac{w^2}{2}$$
$$\Phi_{Z_n} = e^{-\frac{w^2}{2}}$$

6 MATLAB Code generating the figures

In this section we give the MATLAB code used to generate fig. 1 and fig 2.

```
ylabel('S_n/n');
figure(2)
plot(x2,B);
hold on
plot(x2,0.5,'r','linewidth',2);
xlabel('n');
ylabel('S_n/n');
```