
ECE511: Analysis of Random Signals Spring 2014

Lecture 13 — 10, 20, 2014

Dr. Salim El Rouayheb Scribe: Rawad Bitar

1 Overview

In the last lecture, we talked about Chebyshev’s and Markov’s inequalities. Then, we proved a weak
version of the Law of large numbers before closing by defining the Moment Generating Function of
a RV.

In this lecture, we will introduce Chernoff bound, define the characteristic function of a RV, give
some examples and conclude by proving the Central Limit Theorem with examples.

2 Moment Generating Functions (MGF)

Recall that the moment generating function MX(t) is by definition equal to E(etX) for t ∈ C.

Example: Let X ∼ Poisson(λ), P (X = k) = e−λ λ
k

k! , k = 0, 1, 2, . . . .

1. Find Mx(t).

MX(t) = E(etλ) =
∞∑
k=0

etkP (X = k)

MX(t) =
∞∑
k=0

etke−λ
λk

k!
= e−λ

∞∑
k=0

(λet)k

k!

MX(t) = e−λeλe
t
.

2. Find E(X) from Mx(t).

E(X) =
∂MX(t)

∂t
|t=0= λeteλ(e

t−1) |t=0= λ.

3 Chernoff Bound

In this section, we introduce the Chernoff bound. Recall that to use Markov’s inequality X must
be positive.
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Theorem 1. (Chernoff’s bound) For any RV X,

P (X ≥ a) ≤ e−atMX(t) ∀ t > 0.

In particular,
P (X ≥ a) ≤ min

t
e−atMX(t).

Proof. Apply Markov on Y = etX , but first recall that P (X ≥ a) = P (etX ≥ eta) = P (Y ≥ eta),
by Markov we get

P (Y ≥ eta) ≤ E(Y )

eta
= e−taE(Y )

P (X ≥ a) ≤ e−taMX(t)

Example: Consider X ∼ N(µ, σ) and try to bound P (X ≥ a) using Chernoff bound, this is an
artificial example because we know the distribution of X.

From last lecture MX(t) = eµt+
σ2t2

2 hence

P (X) ≤ min
t
e−ateµt+

σ2t2

2 = min
t
e(µ−a)t+

σ2t2

2

Remark: You can check at home how the parameter t can affect the outer bound. For example
pick µ = 0, σ = 1 and change t; for t = 0 you will get the trivial bound P ≤ 1 and for t→∞ you
will get P ≤ ∞. See how it varies.

min
t
e(µ−a)t+

σ2t2

2 ⇒ ∂f(t)

∂t
= 0

⇒ (σ2t+ µ− a)e = 0

⇒ t∗ =
a− µ
σ2

Which gives us the following:

P (X ≥ a) ≤ e(µ−a)t∗+
σ2t∗

2

P (X ≥ a) ≤ e
−(a−µ)(µ−a)

σ2
+
σ2(a−µ)2

2σ4

P (X ≥ a) ≤ e
−(a−µ)2

2σ2

We can compare this result with the reality where we know that P (X ≥ a) =
∫∞
a

1√
2πσ

e
−(x−µ)2

2σ2 dx.
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4 Characteristic Function

In this section, we define a characteristic function and give some examples. The characteristic
function of a RV is similar to a Fourrier transform of a function without the ’-’.

Definition: X is a RV,

ΦX(w) = E(ejwX) =

∫ +∞

−∞
fX(x)ejwxdx, (1)

is called the characteristic function of X where j is the complex number j2 = −1.

Example: Find the characteristic function of X ∼ exp(λ). Recall that for λ ≥ 0

fX(x) =

{
λe−λx if x ≥ 0

0 otherwise

Then

ΦX(w) =

∫ ∞
0

λe−λxejwxdx

= λ

∫ ∞
0

e(jw−λ)xdx

=
λ

jw − λ
[
e(jw−λ)x

]∞
0

Since λ ≥ 0 and jw is a unit quantity ⇒ (jw − λ) ≤ 0 therefore limx→∞ e
(jw−λ)x = 0. Which

results in

ΦX(w) =
λ

jw − λ
(0− 1)

ΦX(w) =
λ

λ− jw

Lemma 2. if X,Y are two independent RV and Z = X + Y then ΦZ(w) = ΦX(w)ΦY (w) and
MZ(t) =MX(t)MY (t)

Remark: To find the distribution of Z = X + Y it could be easier to find ΦX(w), ΦY (w),
multiply them and then invert the from “Fourrier” domain by integrating or by using tables of
Fourrier inverse.

Example: Consider the example of problem 9 of homework 3:
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Question: Let X1 and X2 be two independent RV such that X1 ∼ N(µ1, σ1) and X2 ∼ N(µ2, σ2)
and let X = aX1 + bX2. Find the distribution of X.

Answer: Let X ′1 = aX1, X
′
2 = bX2 it is clear that X ′1 ∼ N(aµ1, aσ1) and X ′2 ∼ N(bµ2, bσ2) and

that ΦX(w) = ΦX′1
(w)ΦX′2

(w).

ΦX′1
(w) = . . . = eaµ1jw−

a2σ21w
2

2

ΦX(w) = eaµ1jw−
a2σ21w

2

2 ebµ2jw−
b2σ22w

2

2

ΦX(w) = ej(aµ1+bµ2)w−(a
2σ2

1+b
2σ2

2)
w2

2

Which implies that X ∼ N(aµ1 + bµ2,
√
a2σ21 + b2σ22).

Fact 3. A linear combination of two independent Gaussian RV is a Gaussian RV.

5 Central Limit Theorem

In this section we state the central limit theorem and give a rigourous proof.

Theorem 4. Let X1, X2, . . . , Xn be n independent RVs with µXi = 0 and V (Xi) = 1 ∀i then

Zn =
X1 +X2 + · · ·+Xn√

n
→

n→∞
N(0, 1)

In other words

lim
n→∞

P (Z ≤ z) =
1√
2π

∫ z

−∞
e−

x2

2 dx

This is for example a way to convert flipping a coin n times to a Gaussian RV (fig. 1,fig. 2).

Xi =

{
0 if a tail is observed with p = 1

2

1 if a head is observed with 1− p = 1
2

And set Sn =
∑n
i=0Xi√
n

, notice that Sn ∈ {0, 1, . . . , n√
n
} and according to CLT Sn ∼

n→∞
N(0, 1).

CLT: says that no matter how far you are from the mean, the probability of X = x being outside
|x− µ| ≤

√
n decreases exponentially with n.

Remark: The RVs Xi have to be independent because if for example Xi = X1 for i ∈ {2, 3, . . . , n}
then

Sn = nXi =

{√
n if X1 = 1

0 if X1 = 0

which does not converge to a Gaussian distribution when n→∞.
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Figure 1: This is Sn
n

as a function of n, we can clearly see that when n grows Sn
n

goes
to 0.5 for the equation of the example below for n goes to 100. Refer to section 6 for
detailed code.

Proof. (of theorem 4)

lim
n→∞

ΦZn(w) = e−
w2

2 ⇒ fZ(z) =
1√
2π
e−

x2

2

where this form of ΦZn(w) is the characteristic function of a N(0, 1) RV.

Zn =
X1√
n︸︷︷︸

W1

+
X2√
n︸︷︷︸

W2

+ · · ·+ Xn√
n︸︷︷︸

Wn

ΦZn(w) = ΦW1(w)ΦW2(w)ΦW3(w) . . .ΦWn(w) = [ΦW1(w)]n

ΦW1(w) = E(ewjW1) = E(e
jwX1√

n ) = ΦX1(
w√
n

)

Taylor expansion: Using the Taylor expansion of ΦW1(w) around 0 we get,

ΦW1(w) = ΦW1(0) + Φ′W1
(0) +

Φ′′W1
(0)

2!
+ . . .

.
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Figure 2: This is Sn
n

as a function of n, we can clearly see that when n grows Sn
n

goes
to 0.5 for the equation of the example below for n goes to 300. Refer to section 6 for
detailed code.

1. Find the value of ΦW1(0).

ΦW1(0) = E(e
jwX√
n ) |w=0

=

∫ +∞

−∞
e
j0X√
n fX(x)dx

=

∫ +∞

−∞
fX(x)dx

= 1

2. Find the value of Φ′W1
(0).

Φ′W1
(0) =

∫ +∞

−∞

jx√
n
e
j0X√
n fX(x)dx

=
j√
n

∫ +∞

−∞
xfX(x)dx

=
j√
n
E(X1)

= 0
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3. Find the value of Φ′′W1
(0).

Φ′′W1
(0) =

d2ΦW1(w)

dw2

=

∫ +∞

−∞
(
jx√
n

)2e
j0X√
n fX(x)dx

=
−1

n

∫ +∞

−∞
x2fX(x)dx

=
−1

n
(V (X)︸ ︷︷ ︸

1

+E2(X)︸ ︷︷ ︸
0

)

=
−1

n

Hence, using these results and Taylor’s expansion, ΦW1(w) = 1− w2

2n . Therefore ΦZn(w) = [1− w2

2n ]n.
Recall that log (1− ε) ' −ε, then

log ΦZn = n log (1− w2

2n
)

log ΦZn ' n(−w
2

2n
)

log ΦZn ' −
w2

2

ΦZn = e−
w2

2

6 MATLAB Code generating the figures

In this section we give the MATLAB code used to generate fig. 1 and fig 2.

A=[];B=[]; % generate two empty vectors
for i=1:100 % in this loop i stands for the number of times the coin is flipped

A=[A,binornd(i,0.5)/i]; % at each iteration generate a binomial random number with
end % parameters n=i, p=0.5 and divide it by n to have (S n)/n
for n=1:300
B=[B,binornd(n,0.5)/n]; % same as previous but repeat it 300 times
end

x1=[1:i];x2=[1:n]; % x1 and x2 are used to represent n in each figure

figure(1)
plot(x1,A);
hold on
plot(x1,0.5,'r','linewidth',2);
xlabel('n');
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ylabel('S n/n');

figure(2)
plot(x2,B);
hold on
plot(x2,0.5,'r','linewidth',2);
xlabel('n');
ylabel('S n/n');
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