ECE511: Analysis of Random Signals Spring 2014

Lecture 13 — 10, 20, 2014
Dr. Salim El Rouayheb Scribe: Rawad Bitar

1 Overview

In the last lecture, we talked about Chebyshev’s and Markov’s inequalities. Then, we proved a weak
version of the Law of large numbers before closing by defining the Moment Generating Function of

a RV.

In this lecture, we will introduce Chernoff bound, define the characteristic function of a RV, give
some examples and conclude by proving the Central Limit Theorem with examples.

2 Moment Generating Functions (MGF)

Recall that the moment generating function Mx (¢) is by definition equal to E(e!™) for t € C.
Example: Let X ~ Poisson(\), P(X =k) = e’)‘)‘k—};, k=0,1,2,....
1. Find M,(t).

Mx(t) = E(e?) = iet’fp(x = k)
k=0

o0 _ )\k B o0 )\et k
MX(t):Zetke )\ﬂ:‘f )\Z( k:‘)
k=0 ) k=0 ’

2. Find E(X) from M,(¢).

o= Aeteet=1) o= A

3 Chernoff Bound

In this section, we introduce the Chernoff bound. Recall that to use Markov’s inequality X must
be positive.



Theorem 1. (Chernoff’s bound) For any RV X,
P(X >a) <e “Mx(t)Vt>0.
In particular,

P(X >a) < mtin e " Mx ().

Proof. Apply Markov on Y = !X but first recall that P(X > a) = P(e/X > €!%) = P(Y > €'%),
by Markov we get

o = "E(Y)
P(X >a) <e "Mx(t)

O]

Example: Consider X ~ N(u,0) and try to bound P(X > a) using Chernoff bound, this is an
artificial example because we know the distribution of X.

From last lecture Mx (t) = e’“”r 2 hence

. —at t+ﬁ . ( 7a)t+£
P(X) < min e M e = min e a 2

Remark: You can check at home how the parameter ¢ can affect the outer bound. For example
pick 4 = 0,0 =1 and change t; for t = 0 you will get the trivial bound P < 1 and for ¢t — oo you
will get P < 0o. See how it varies.

(u—a)t—kif = af(t) _ O
ot
= (0*t+p—a)e=0
a—p
o2

mine
t

= t* =

Which gives us the following:

P(X > a) < elpat +5

—(a=p)(p=a) | o®(a—p)®

P(X>a)<e o2 201
—(a—p)?
P(X >a)<e 252

(I u)z

We can compare this result with the reality where we know that P(X > a) f

27r0'



4 Characteristic Function

In this section, we define a characteristic function and give some examples. The characteristic
function of a RV is similar to a Fourrier transform of a function without the ’-’.

Definition: X is a RV,

Dy (w) = B(eIX) = / fx(x)e! " dx, (1)
—0oQ
is called the characteristic function of X where j is the complex number j2 = —1.

Example: Find the characteristic function of X ~ exp(A). Recall that for A > 0

fx(z) =

Ae ™ if x>0
0 otherwise

Then
@X(w):/ e ATIVE .
0

= )\/OO W=z o
0

S, FUES VS

Cjw— A 0

Since A > 0 and jw is a unit quantity = (jw — A) < 0 therefore lim,_; o elw=Nz — (. Which
results in
P = 0—1
xw) = =2 (0-1)
A
A —jw

Ox(w) =

Lemma 2. if X,Y are two independent RV and Z = X +Y then ®z(w) = ¢x(w)Py(w) and
Mu(t) = Mo () My (1)

Remark: To find the distribution of Z = X 4+ Y it could be easier to find ®x(w), Py (w),
multiply them and then invert the from “Fourrier” domain by integrating or by using tables of
Fourrier inverse.

Example: Consider the example of problem 9 of homework 3:



Question: Let X; and X3 be two independent RV such that X7 ~ N(u;,01) and Xo ~ N(p2,09)
and let X = aXq + bX5. Find the distribution of X.

Answer: Let X| = aX;, X} = bXy it is clear that X] ~ N(ap1,a01) and X} ~ N(bua, boz) and
that @X(w) = (I)Xi (w)@xé (w)
2 2 2

. a o'lw
ap jw——y

Pxi(w)=...=e€
2.2 2

. 70,20'%102 b . 71) ojw
Oy (w) = eM1Iv— "2 a3

2
@X (w) g ej(al‘1+bll2)w—(a2o—%+b2o_§)wT

Which implies that X ~ N(au1 + bug, \/a?o% + b%03).

Fact 3. A linear combination of two independent Gaussian RV is a Gaussian RV.

5 Central Limit Theorem

In this section we state the central limit theorem and give a rigourous proof.
Theorem 4. Let X1, Xo,..., X, be n independent RVs with px, =0 and V(X;) =1 Vi then

Xi+Xo+--+ X,
Ly =

NG njoo N(0,1)

In other words . ; ,
lim P(Z < z :/ e~ 7 dx
n—00 ( ) 271 NS
This is for example a way to convert flipping a coin n times to a Gaussian RV (fig. 1,fig. 2).

o 0 if a tail is observed with p = %
! 1 if a head is observed with 1 — p = %

And set S, = Lizo Xi notice that S, € {0,1,...

= } and according to CLT S,, ~ N(0,1).

n
RV n—00

CLT: says that no matter how far you are from the mean, the probability of X = x being outside
|x — u| < 4/n decreases exponentially with n.

Remark: The RVs X; have to be independent because if for example X; = X; fori € {2,3,...,n}

then
if Xq1=1
0 1fX1:0

which does not converge to a Gaussian distribution when n — oo.
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Figure 1: Thisis 22 as a function of n, we can clearly see that when n grows Sn goes
n n

to 0.5 for the equation of the example below for n goes to 100. Refer to section 6 for
detailed code.

Proof. (of theorem 4)

. _w? 1 a2
Jim &z, (w) = e =>fz(2)—\/§€ 2

where this form of ®z (w) is the characteristic function of a N(0,1) RV.

X1 Xo Xn
/. = — = .
Y v Ry
~— =~
Wi Wa Wn
Dz, (w) = Pw, () Py, (W) Py (w) ... Pw, (W) = [P, (w)]"
JwXq w

Taylor expansion: Using the Taylor expansion of ®yy, (w) around 0 we get,

oy, (0)
2l

(I)Wl (w) = (I)Wl (O) + (I)/‘/Vl (0) + + ...

100
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Figure 2: This is 22 as a function of n, we can clearly see that when n grows Sn goes
n n

to 0.5 for the equation of the example below for n goes to 300. Refer to section 6 for
detailed code.

1. Find the value of ®yy, (0).

jwx
Dy, (O) = E(e vn ) ‘w=0
:/ eV fx(x)dx

_iooo
= fx(x)dx

—0o0

2. Find the value of @, (0).



3. Find the value of @}, (0).

Oy, (w)
ng (0) = dw12
+o0o ‘x J0X
= [ e px@o
—00
—1 [To°
= — 22 fx (z)dx
n —00
-1
= —(V(X) + E*(X))
n \_}f_/ \__B._/
-1
on
Hence, using these results and Taylor’s expansion, @y, (w) = 1— 12”—2 Therefore &, (w) = [1— g’—z]"
Recall that log (1 — €) ~ —e, then
2
w
log®z, =nlog(l — —
og®z, =nlog( 2n)
2
w
log®y ~n(——
2
w
log®y, ~ 5
w2
(DZn = 677
O

6 MATLAB Code generating the figures
In this section we give the MATLAB code used to generate fig. 1 and fig 2.

A=[1;B=[]; % generate two empty wvectors

for i=1:100 % in this loop stands for the number of times the coin is flipped
A=[A,binornd (i, 0.5)/1]; at each iteration generate a binomial random number with

end parameters n=i, p=0.5 and divide it by n to have (S.n)/n

for n=1:300

B=[B,binornd(n,0.5)/n];

end

S

o

o\

same as previous but repeat it 300 times

x1=[1:1];x2=[1:n];

o\

x1 and x2 are used to represent n in each figure

figure (1)

plot (x1,R);

hold on

plot(x1,0.5,'r', 'linewidth',2);
xlabel('n'");



ylabel ('S.n/n'");

figure (2)

plot (x2,B);

hold on

plot (x2,0.5,'r', "linewidth',2);
xlabel ('n'");

ylabel ('S.n/n");



