Making sense of Econometrics: Basics Lecture 5: Autocorrelation

Hany Abdel-Latif & Anita Staneva

Egypt Scholars Economic Society

November 8, 2014

Assignment & feedback

enter classroom at

http://b.socrative.com/login/student/

room name c28efb78

Hany Abdel-Latif & Anita Staneva

ESES0101 Lecture 5 .. Autocorrelation

- meaning
- sources
- consequences
- detection
- example

meaning sources consequences detection example

- correlation between members of series of observations ordered in time or space
- the CLRM assumes that
 - $E(u_iu_j) = 0$ for $i \neq j$
 - the disturbance term relating to any observation is not influenced by the disturbance term relating to any other observation
- example
 - there is no reason to believe that the disruption due to a labour strike affecting output in one quarter will be carried over to the next quarter
 - the effect of an increase of one family's income on its consumption expenditure is not expected to affect the consumption expenditure of another family

meaning sources consequences detection example

- if there is autocorrelation $E(u_i u_j) \neq 0$ for $i \neq j$
- example
 - the disruption caused by a strike this quarter may very well affect output next quarter
 - the increases in the consumption expenditure of one family may very well prompt another family to increase its consumption expenditure

meaning sources consequences detection example

nature of autocorrelation

• a discernible pattern among the u's

• a cyclical pattern

meaning sources consequences detection example

- a discernible pattern among the u's
 - an upward linear trend in the disturbances

meaning sources consequences detection example

- a discernible pattern among the *u*'s
 - a downward linear trend in the disturbances

meaning sources consequences detection example

- a discernible pattern among the u's
 - a linear and quadratic trend terms are present in the disturbances

meaning sources consequences detection example

- a discernible pattern among the u's
 - no systematic pattern, supporting the non-autocorrelation assumption of the CLRM

meaning sources consequences detection example

sources of autocorrelation

- inertia business cycles
- especification bias
 - excluded variables
 - incorrect functional form
- Obweb phenomenon
- Iags
- Imanipulation of Data
- ø data transformation
- onstationarity

meaning sources consequences detection example

consequences of autocorrelation

 $Y_t = \beta_1 + \beta_2 X_t + u_t$

- $E(u_t, u_{t+s}) \neq 0$, for $s \neq 0$, is too general assumption
- for any practical use, we must assume the mechanism that generates u_t
- assume that the disturbance terms are generated by the following mechanism

$$u_t = \rho u_{t-1} + \epsilon_t$$

- $\bullet\,$ where ρ is known by the coefficient of autocovariance
- $-1 < \rho < 1$
- ϵ_t is the stochastic disturbance satisfies the standard OLS assumptions

meaning sources consequences detection example

consequences of autocorrelation

 $u_t = \rho u_{t-1} + \epsilon_t$

- an error term with the preceding properties is called a white noise error term
- the value of the disturbance term in period t is equal to ρ times its value in the previous period plus a purely random error term
- this scheme is known as Markov first-order autoregressive, usually denoted as *AR*(1)
- it is first order because u_t and its immediate past value are involved; the maximum lag is 1

meaning sources consequences detection example

consequences of autocorrelation

if the model was

$$u_t = \rho_1 u_{t-1} + \rho_2 u_{t-2} + \epsilon_t$$

• this is a second-order autoregressive scheme, and so on

$$u_t = \rho u_{t-1} + \epsilon_t$$

• ρ , the coefficient of autocovariance, can also be interpreted as the first-order coefficient of autocorrelation, or more accurately, the coefficient of autocorrelation at lag 1

meaning sources consequences detection example

consequences of autocorrelation

$$Y_t = \beta_1 + \beta_2 X_t + u_t$$

 $u_t = \rho u_{t-1} + \epsilon_t$

- it can be shown that
 - the usual OLS formulas to compute the variances and standard errors of β 's could give seriously misleading results
 - $\hat{\beta}$ is still linear and unbiased but not BLUE
 - $\hat{\beta}$ does not have minimum variance

Autocorrelation

What Next? References References meaning sources consequences detection example

detection of autocorrelation

- two ways in general
 - informal (graphically)
 - formal (Durbin-Watson)
- examine the OLS residuals \hat{u}_i
 - since they are the ones we observe, and not the disturbances u_i
 - one hopes that they are good estimates of u_i
 - a hope that may be fulfilled if the sample size is fairly large

meaning sources consequences detection example

informal method

- there are various ways of examining the residuals
 - plot \hat{u}_t against time; or
 - plot \hat{u}_t against \hat{u}_{t-1}
- if the residual are non-random, you will obtain pictures similar to what we have shown before

meaning sources consequences detection example

Durbin-Watson test

$$d = \frac{\sum_{t=2}^{t=n} (\hat{u}_t - \hat{u}_{t-1})^2}{\sum_{t=1}^{t=n} \hat{u}_t^2}$$

assumptions underlying the d statistic

- regression includes the intercept term
- explanatory variables are nonstochastic; fixed in repeated sampling
- u_t are generated by AR(1) scheme; cannot be used to detect higher-order autoregressive scheme

meaning sources consequences detection example

formal method

Durbin-Watson test

$$d = \frac{\sum_{t=2}^{t=n} (\hat{u}_t - \hat{u}_{t-1})^2}{\sum_{t=1}^{t=n} \hat{u}_t^2}$$

assumptions underlying the d statistic

- u_t is normally distributed
- regression does not include lagged values of the dependent variable as one of the explanatory variables
- no missing observations in the data

meaning sources consequences detection example

formal method

Durbin-Watson test

$$d = \frac{\sum_{t=2}^{t=n} (\hat{u}_t - \hat{u}_{t-1})^2}{\sum_{t=1}^{t=n} \hat{u}_t^2}$$

•
$$d \approx 2(1 - \hat{\rho})$$
; where $\hat{\rho} = \frac{\sum \hat{u}_t \hat{u}_{t-1}}{\sum \hat{u}_t^2}$

- since that $-1 < \rho < 1$, then $2 \le d \le 4$
- these are the bounds of *d*; any estimated *d* value must lie within these limits

hypotheses

- H_0 : no positive autocorrelation
- H_0^* : no negative autocorrelation

Autocorrelation

What Next? References References meaning sources consequences detection example

formal method

how to make a decision?

meaning sources consequences detection example

formal method

Durbin-Watson

- In our our our output of the second secon
- **2** compute d, Stata gives d
- (a) for the given sample size and given number of explanatory variables, find out the critical d_L and d_U values
- I follow the decision role shown before

example

- suppose we calculated d = 0.1229 for a given regression model with n = 40 and one explanatory variable
- from the Durbin-Watson tables, $d_L = 1.44$ and $d_U = 1.54$ at $\alpha = 5\%$
- d lies below d_L , we can not reject the null hypothesis that there is positive serial correlations in the residuals

meaning sources consequences detection example

• data come from (Klein, 1950)

use http://www.stata-press.com/data/r13/klein des

	storage	display	value	
variable name	type	format	label	variable label
уг	float	%9.0g		year
consump	float	%9.0g		consumption
profits	float	%9.0g		private profits
wagepriv	float	%9.0g		private wage bill
invest	float	%9.0g		investment
capital1	float	%9.0g		lagged value of capital stock
totinc	float	%9.0g		total income/demand
wagegovt	float	%9.0g		government wage bill
govt	float	%9.0g		government spending
taxnetx	float	%9.0g		indirect bus taxes + net export
wagetot	float	%9.0q		total US wage bill
vear	float	%9.0q		calendar year - 1931
profits1	float	%9.0a		last year's private profits
totinc1	float	%9.0g		last year's total income/demand

Hany Abdel-Latif & Anita Staneva ESES0101 Lecture 5 .. Autocorrelation

meaning sources consequences detection example

tab yr

- we have 22 observations from 1920 to 1941
- suppose we want to fit an OLS model of consumption on the government wage bill

$$consump_t = \beta_1 + \beta_2 wagegovt_t + u_t$$

tsset yr

Autocorrelation

What Next? References References meaning sources consequences detection example

reg consump wagegovt

Source	SS	df	MS		Number of obs	= 22 = 17.72
Model Residual	532.567711 601.207167	1 53 20 30	2.567711 .0603584		Prob > F R-squared Adi R-squared	= 0.0004 = 0.4697 = 0.4432
Total	1133.77488	21 53	.9892799	Root MSE		= 5.4827
consump	Coef.	Std. Err	•. t	P> t	[95% Conf.	Interval]
wagegovt _cons	2.50744 40.84699	.5957173 3.192183	4.21 12.80	0.000 0.000	1.264796 34.18821	3.750085 47.50577

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

meaning sources consequences detection example

examine residuals: informal

predict e, residual scatter e yr

Hany Abdel-Latif & Anita Staneva ESES0101 Lecture 5 .. Autocorrelation

Autocorrelation

What Next? References References meaning sources consequences detection example

examine residuals: informal

scatter e l.e

meaning sources consequences detection example

examine residuals: Durbin-Watson

estat dwatson

Durbin-Watson d-statistic(2, 22) = .3217998

• find critical values for n=22 and one explanatory variable at $\alpha=5\%$

obs	k'=1		k':	=2	k'=3		k'=4		k'=5	
N	d_L	d_u	d_L	d_{μ}	d_L	d_u	d_L	d_u	d_L	d_u
21	1.221	1.420	1.125	1.538	1.026	1.669	0.927	1.812	0.829	1.964
22	1.239	1.429	1.147	1.541	1.053	1.664	0.958	1.797	0.863	1.940
23	1.257	1.437	1.168	1.543	1.078	1.660	0.986	1.785	0.895	1.920
24	1.273	1.446	1.188	1.546	1.101	1.656	1.013	1.775	0.925	1.902
25	1.288	1.454	1.206	1.550	1.123	1.654	1.038	1.767	0.953	1.886
26	1.302	1.461	1.224	1.553	1.143	1.652	1.062	1.759	0.979	1.873
27	1.316	1.469	1.240	1.556	1.162	1.651	1.084	1.753	1.004	1.861
28	1.328	1.476	1.255	1.560	1.181	1.650	1.104	1.747	1.028	1.850
29	1.341	1.483	1.270	1.563	1.198	1.650	1.124	1.743	1.050	1.841
30	1.352	1.489	1.284	1.567	1.214	1.650	1.143	1.739	1.071	1.833
31	1.363	1.496	1.297	1.570	1.229	1.650	1.160	1.735	1.090	1.825
32	1.373	1.502	1.309	1.574	1.244	1.650	1.177	1.732	1.109	1.819
33	1.383	1.508	1.321	1.577	1.258	1.651	1.193	1.730	1.127	1.813
34	1.993	1.514	1.333	1.580	1.271	1.652	1.208	1.728	1.144	1.808
35	1.402	1.519	1.343	1.584	1.283	1.653	1.222	1.726	1.160	1.803
36	1.411	1.525	1.354	1.587	1.295	1.654	1.236	1.724	1.175	1.799

Hany Abdel-Latif & Anita Staneva

ESES0101 Lecture 5 .. Autocorrelation

meaning sources consequences detection example

examine residuals: Durbin-Watson

•
$$d_L = 1.239$$
 and $d_U = 1.429$

- d = 0.32 is far from the center of its distribution d = 2
- reject the null of no first-order autocorrelation
- evidence of positive autocorrelation

meaning sources consequences detection example

- if we assume that *wagegovt* is strictly exogenous, we could refit the model using *arima*, and model the error term explicitly
- if not willing to assume that *wagegovt* is strictly exogenous, use Durbin's alternative test or the Breusch–Godfrey to test for first order autocorrelation

Autocorrelation What Next? References

References

meaning sources consequenc detection example

estat durbinalt, small

Durbin's alternative test for autocorrelation						
lags(p)	F	df	Prob > F			
1	35.035	(1, 19)	0.0000			
	H0: no se	erial correlation				

estat bgodfrey, small

Breusch-Godfrey LM test for autocorrelation					
lags(p)	F	df	Prob > F		
	14.264	(1, 19)	0.0013		
	H0: no se	erial correlation			
		4 F			

Hany Abdel-Latif & Anita Staneva ESES0101 Lecture 5 .. Autocorrelation

meaning sources consequences detection **example**

- both tests strongly reject the null of no first-order autocorrelation
- we can refit the model with two lags of *consump* included as regressors and then run the test again
- not that because the revised model includes lagged values of the dependent variable, Durbin-Watson test is not applicable

Autocorrelation What Next?

References References meaning sources consequen detection example

regress consump wagegovt L.consump L2.consump

Source	SS	df		MS		Number of obs = $5(-2) = 16$		Number of obs = 2 F(3 16) = 44 0	= 20
Model Residual	702.660311 85.1596011	3 16	234. 5.32	220104 247507		Prob > F R-squared	= 0.0000 = 0.8919 = 0.8716		
Total	787.819912	19	41.4	642059		Root MSE	= 2.307		
consump	Coef.	Std.	Err.		P> t	[95% Conf.	Interval]		
wagegovt	.6904282	.3295	485	2.10	0.052	0081835	1.38904		
consump									
L1.	1.420536	.197	024	7.21	0.000	1.002864	1.838208		
L2.	650888	.1933	351	-3.37	0.004	-1.06074	241036		
_cons	9.209073	5.006	701	1.84	0.084	-1.404659	19.82281		

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Hany Abdel-Latif & Anita Staneva ESES0101 Lecture 5 .. Autocorrelation

meaning sources consequences detection example

estat durbinalt, small lags(1/2)

Durbin's alternative test for autocorrelation						
lags(p)	F	df	Prob > F			
1	0.080	(1, 15)	0.7805			
2	0.260	(2, 14)	0.7750			
	H0: no se	erial correlation				

estat bgodfrey, small lags(1/2)

Breusch-Godfre	ey LM test for auto	correlation		
lags(p)	F	c	If	Prob > F
1	0.107	(1,	15)	0.7484
2	0.358	(2,	14)	0.7056
	H0: no se	erial correl	lation	

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Hany Abdel-Latif & Anita Staneva ESES0101 Lecture 5 .. Autocorrelation

Autocorrelation

What Next? References References example

- *wagegov* and the constant term are no longer statistically different from zero at the 5% level
- including the two lags of *consump* has removed any serial correlation from the errors

you should know

- assignment 2
 - due on November 22 (20:00 Cairo time)
 - must attach the cover sheet
 - to be emailed to eses@egyptscholars.org

next lecture

- Saturday November 15 (20:00 Cairo time)
- regression in practice
 - multicolinearity
 - specification bias

A = A = A
 A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Klein, L. R. (1950), 'Economic fluctuations in the united states, 1921-1941'.

