CS3350 - Automata

Exam 1

October 6, 2014 - 1 hour and 20 minutes

NAME: SOLUTION

GRADE: Total = /100

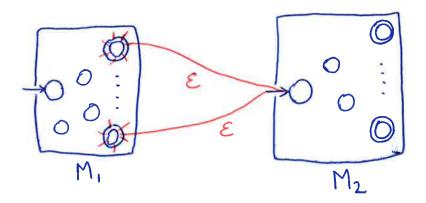
- 1. / 30
- 2. / 50
- 3. / 20

Rules: This exam is to be done individually. Class notes and books of any kind are not allowed.

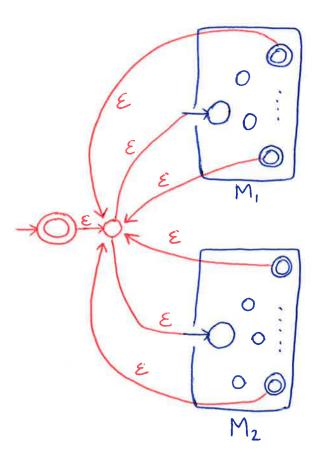
You must write <u>legibly</u> and <u>in a structured manner</u>: unreadable answers will be graded 0; messy / hard-to-follow answers will be penalized by up to 75%.

Cell phones should be turned off, no headsets allowed. Turn in your exam by 10:20am sharp: no exam will be accepted past this time.

1 General Knowledge [30 points]

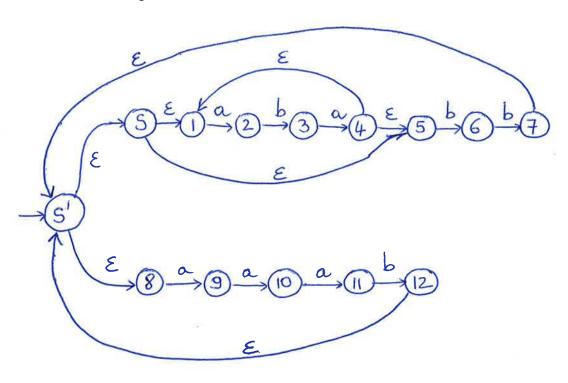

- 1.1 Consider the language L described by its regular expression: $(ab^+)^*ab$, where $\Sigma = \{a, b\}$. Give two strings that are members of L and two strings that are not members of L.
 - Member: ab
 - Member: abbab
 - Not a member: bo
 - Not a member: Q
- 1.2 You are given a language L, that is regular. Please answer the following questions (circle your answers when appropriate):
 - 1. Is there an NFA that recognizes L?

YES / NO

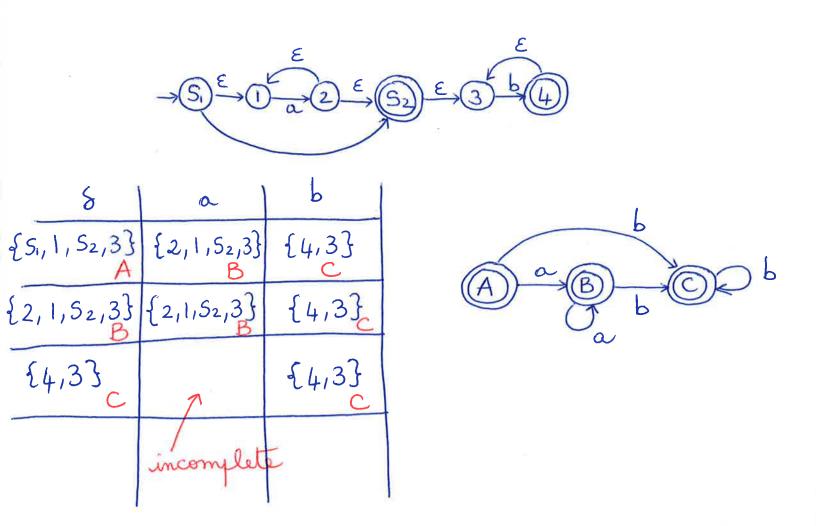

2. There is only one DFA that recognizes L.

TRUE / FALSE

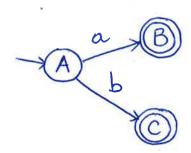
- 1.3 Apply the requested operators on the abstract finite automata below.
- 1.3.1 Build the automaton that recognizes $L = L(M_1) \cdot L(M_2)$

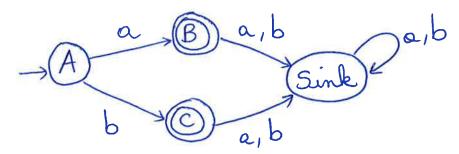


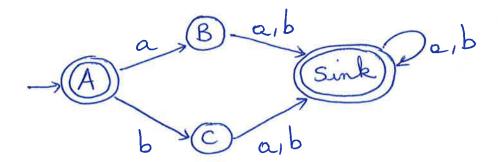
1.3.2 Build the automaton that recognizes $L = (L(M_1) \cup L(M_2))^*$

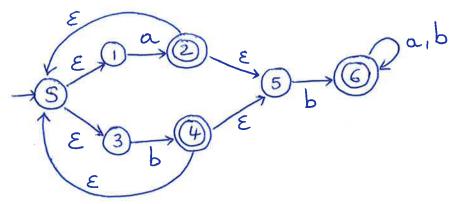


2 From Language to FA, and NFA to DFA [50 points]

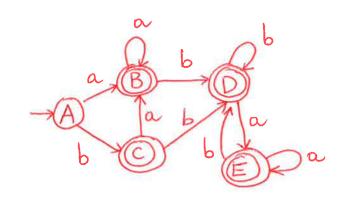

2.1 Consider the following language $L=(((aba)^*\cdot bb)\cup aaab)^+$ over the alphabet $\Sigma=\{a,b\}$. Build an NFA for L from smaller automata, using the techniques presented in class.


2.2 Consider the following NFA. Convert it into a DFA by following the procedure detailed in class.

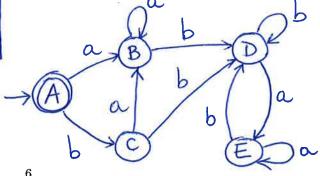

2.2.1 Consider the following DFA that recognizes some language L. Produce a DFA for \bar{L} .


first, we need to complete this DFA:

now we can create its complement:



2.2.2 Consider the following NFA that recognizes some language L. Produce a DFA for \bar{L} .



list:	: NFA	→ DFA
-------	-------	-------

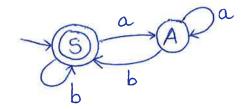
-()		
5	a	b
Α	{2,5,1,3,5}	
	{2,5,1,3,5}	
	{2,5,1,3,5}	6 1
{4,5,1,3,5, 6}	{2,5,1,3,5, 6} E	{4,5,1,3,5, 6} _D
{2,5,1,3,5, 6}	{2,5,1,3,5, 6} E	{4,5,1,3, 5,6} _D

this DFA is complete, we can take its complement:

(note: it recognizes E)

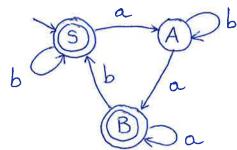
3 From DFA to Language [20 points]

For each of the following DFAs, identify the language they recognize, following the two step approach presented in class: (1) lay out the set of equations, (2) solve the equations using the one important simplification rule.


3.1 DFA 1.

(1).
$$S = \varepsilon + \alpha S = \alpha^{*}. \varepsilon = \alpha^{*}$$

3.2 DFA 2.


(1)
$$S = aA$$

 $A = E + bA + aS$ (2) $A = b*(E + aS)$
 $= b* + b*aS$.
therefore $= S = a(b* + b*aS)$
 $= ab* + ab*aS$
 $= (ab*a)*ab*$.

3.3 DFA 3.

(1)
$$S = E + aA + bS$$

 $A = aA + bS \xrightarrow{(2)} A = a*bS$
hence: $S = bS + aa*bS + E = (b+a*b)S + E$
 $= (b+a*b)*.E = (b+a*b)*.$

3.4 DFA 4.

(i)
$$S = \varepsilon + aA + bS$$

 $A = bA + aB$
 $B = \varepsilon + aB + bS \xrightarrow{(2)} B = a^*(\varepsilon + bS) = a^* + a^*bS$.
Alence = $A = bA + a^* + a^*bS$
 $= b^*a^* + b^*a^*bS$
and = $S = \varepsilon + ab^*a^* + ab^*a^*bS + bS$
 $= (ab^*a^*b^*b^*)S + (\varepsilon + ab^*a^*)$
 $= (ab^*a^*b^*b^*)S + (\varepsilon + ab^*a^*b^*)$
 $= (ab^*a^*b^*b^*)S + (\varepsilon + ab^*a^*b^*)$