
correct.

Question 1. [5 points] Run the DFA minimization algorithm seen in class on the following DFA. * Important: Make sure that your answer is structured in such a way that it is clear which step you took first, second, etc.

(see lecture notes on Piazza)

At this point, in our container of states to consider, we have:

$$NF_{2} = \{F, I\}$$

 $NF_{11} = \{B, C\}$
 $NF_{12} = \{D, G\}$
 $NF_{13} = \{E, H\}$.

(5) $NF_2 : a b c$ $F F_2 NF_2 \times I$ $I F_2 NF_2 \times I$

(6)	NFII =	a	6	C	
	B	NF12	×	NF ₁₃	/
	C	NF ₁₂	X	NF ₁₃	·

(7)	NF12:	a	6	c	
	D	×	NF ₂	×	,
	G	X	NF ₂	X	~

(8)
$$NF_{13} = a b c$$

$$E \times NF_{2}$$

$$H \times NF_{2}$$

(9) container is empty, we are done.