DFA Minimization Algorithm:

Note: Throughout this algorithm, we will use a container C (you pick your data structure; e.g.,
stack, queue, priority queue, set) of sets of states.

Initialization:
Separate Final from Non-Final states.
Put each of these two subsets in C provided that they have at least one state.

Example:
If Final = {A} and Non-Final = {B,C,D}, then you only store Non-Final in your container C.

Loop while our container C is non empty (i.e., as long as we have sets of states to check
for consistent behavior).

While (C is not empty) {

Take a set out of C: let’s call this set S
Check the behavior of the states inside of S (i.e,, build their transition table)

If the behaviors of the states inside S are not consistent, Then {
(1) Split S in however many different sets are necessary to ensure that
the new sets have consistent behavior.

(2) Update the set of new states (e.g., NF is now replaced by NF1 and
NF2 and we will use these and no longer NF to check consistent
behaviors)

(3) Store in C any new sets of states (generated from splitting S) that
contains at least 2 states.

(4) Restore in C (if not yet there) all sets of states that contain 2 or
more states.




