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[if p(n) =~ an]* then this would have consequences of the greatest magnitude. That is to say, it
would clearly indicate that, despite the unsolvability of the [Hilbert] Entscheidungsproblem, the
mental effort of the mathematician in the case of the yes-or-no questions would be completely
replaced by machines.... [this] seems to me, however, within the realm of possibility.

— Kurt Go6del in a letter to John von Neumann, 1956

I conjecture that there is no good algorithm for the traveling salesman problem. My reasons are
the same as for any mathematical conjecture: (1) It is a legitimate mathematical possibility, and
(2) I do not know.

—Jack Edmonds, 1966

In this paper we give theorems that suggest, but do not imply, that these problems, as well as
many others, will remain intractable perpetually.
— Richard Karp, 1972

If you have ever attempted a crossword puzzle, you know that it is much harder to
solve it from scratch than to verify a solution provided by someone else. Likewise,
solving a math homework problem by yourself is usually much harder than reading and
understanding a solution provided by your instructor. The usual explanation for this
difference of effort is that finding a solution to a crossword puzzle, or a math problem,
requires creative effort. Verifying a solution is much easier since somebody else has
already done the creative part.

This chapter studies the computational analog of the preceding phenomenon. In
Section 2.1, we define a complexity class NP that aims to capture the set of problems
whose solutions can be efficiently verified. By contrast, the class P of the previous
chapter contains decision problems that can be efficiently solved. The famous P versus
NP question asks whether or not the two classes are the same.

In Section 2.2, we introduce the important phenomenon of NP-complete problems,
which are in a precise sense the “hardest problems” in NP. The number of real-life
problems that are known to be NP-complete now runs into the thousands. Each of
them has a polynomial algorithm if and only if P = NP. The study of NP-completeness

* In modern terminology, if SAT has a quadratic time algorithm
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involves reductions, a basic notion used to relate the computational complexity of two
different problems. This notion and its various siblings will often reappear in later
chapters (e.g., in Chapters 7, 17, and 18). The framework of ideas introduced in this
chapter motivates much of the rest of this book.

The implications of P = NP are mind-boggling. As already mentioned, NP prob-
lems seem to capture some aspects of “creativity” in problem solving, and such creativity
could become accessible to computers if P = NP. For instance, in this case computers
would be able to quickly find proofs for every true mathematical statement for which a
proof exists. We survey this “P = NP Utopia” in Section 2.7.3. Resolving the P versus
NP question is truly of great practical, scientific, and philosophical interest.

2.1 THE CLASS NP

Now we formalize the intuitive notion of efficiently verifiable solutions by defining a
complexity class NP. In Chapter 1, we said that problems are “efficiently solvable” if
they can be solved by a Turing machine in polynomial time. Thus, it is natural to say that
solutions to the problem are “efficiently verifiable” if they can be verified in polynomial
time. Since a Turing machine can only read one bit in a step, this means also that the
presented solution has to be not too long—at most polynomial in the length of the input.

Definition 2.1 (The class NP)
A language L C {0, 1}* is in NP if there exists a polynomial p : N — N and a
polynomial-time TM M (called the verifier for L) such that for every x € {0, 1}*,

xeL s ue{0, 1)PPD st M(x,u) =1

If x € L and u € {0, 1}P(xD satisfy M (x,u) = 1, then we call u a certificate for x (with
respect to the language L and machine M).

Some texts use the term witness instead of certificate. Clearly, P € NP since the
polynomial p(|x]|) is allowed to be 0 (in other words, u can be an empty string).

EXAMPLE 2.2 (INDSET e NP)

To get a sense for the definition, we show that the INDSET language defined in Exam-
ple 0.1 (about the “largest party you can throw”) is in NP. Recall that this language
contains all pairs (G, k) such that the graph G has a subgraph of at least k vertices with
no edges between them (such a subgraph is called an independent set). Consider the
following polynomial-time algorithm M: Given a pair (G, k) and a string u € {0, 1}*,
output 1 if and only if u encodes a list of k vertices of G such that there is no edge
between any two members of the list. Clearly, (G, k) is in INDSET if and only if there
exists a string u such that M ((G, k),u) = 1 and hence INDSET is in NP. The list u of
k vertices forming the independent set in G serves as the certificate that (G, k) is in
INDSET. Note that if # is the number of vertices in G, then a list of k vertices can be
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encoded using O(k log n) bits, where n is the number of vertices in G. Thus, u is a string
of at most O(nlog n) bits, which is polynomial in the size of the representation of G.

EXAMPLE 2.3

Here are a few additional examples for decision problems in NP (see also Exercise 2.2):
Traveling salesperson: Given aset of nnodes, (5) numbers d;; denoting the distances
between all pairs of nodes, and a number k, decide if there is a closed circuit (i.e., a
“salesperson tour”) that visits every node exactly once and has total length at most
k. The certificate is the sequence of nodes in such a tour.

Subset sum: Given a list of n numbers Aq,...,A, and a number T, decide if there
is a subset of the numbers that sums up to 7. The certificate is the list of members
in such a subset.

Linear programming: Given a list of m linear inequalities with rational coefficients

overnvariables uy, . .., u, (alinear inequality has the form ajui +arur+- - -+anu, <
b for some coefficients ay,...,an,b), decide if there is an assignment of rational
numbers to the variables u1,. .., u, that satisfies all the inequalities. The certificate

is the assignment (see Exercise 2.4).

0/1 integer programming: Given a list of m linear inequalities with rational coeffi-
cients over n variables uq,...,u,, find out if there is an assignment of zeroes and
ones to uy, ..., u, satisfying all the inequalities. The certificate is the assignment.

Graph isomorphism: Given two n x n adjacency matrices M1, M3, decide if M}
and M, define the same graph, up to renaming of vertices. The certificate is the
permutation  : [n] — [n] such that M, is equal to M after reordering M;’s indices
according to 7.

Composite numbers: Given a number N decide if N is a composite (i.e., non-prime)
number. The certificate is the factorization of N.

Factoring: Given three numbers N, L, U decide if N has a prime factor p in the
interval [L, U]. The certificate is the factor p.l

Connectivity: Given a graph G and two vertices s,¢ in G, decide if s is connected to

tin G. The certificate is a path from s to ¢.

In the preceding list, the connectivity, composite numbers, and linear programming
problems are known to be in P. For connectivity, this follows from the simple and well-
known breadth-first search algorithm (see any algorithms text such as [KT06, CLRS01]).
The composite numbers problem was only recently shown to be in P (see the beauti-
ful algorithm of [AKS04]). For the linear programming problem, this is again highly
nontrivial and follows from the Ellipsoid algorithm of Khachiyan [Kha79].

All the other problems in the list are not known to be in P, though we do not have
any proof that they are notin P. The Independent Set (INDSET), Traveling Salesperson,
Subset Sum, and Integer Programming problems are known to be NP-complete, which,
as we will see in Section 2.2, implies that they are not in P unless P = NP. The Graph
Isomorphism and Factoring problems are not known to be either in P nor NP-complete.

There is a polynomial-time algorithm to check primality [AKS04]. We can also show that Factoring is in NP
by using the primality certificate of Exercise 2.5.
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2.1.1 Relation between NP and P

We have the following trivial relationships between NP and the classes P and
DTIME(T (n)) of Chapter 1 (see Definitions 1.12 and 1.13).

Claim 2.4 Let EXP = |J__,. Then P NP C EXP. o

Proor: (P € NP): Suppose L € P is decided in polynomial-time by a TM N. Then
L € NP, since we can take N as the machine M in Definition 2.1 and make p(x) the
zero polynomial (in other words, « is an empty string).

(NP € EXP): If L € NP and M, p() are as in Definition 2.1, then we can decide L
in time 29?() by enumerating all possible strings u and using M to check whether u is
a valid certificate for the input x. The machine accepts iff such a u is ever found. Since
p(n) = O(n°) for some ¢ > 1, the number of choices for u is 200 "and the running
time of the machine is similar. H

Currently, we do not know of any stronger relation between NP and deterministic
time classes than the trivial ones stated in Claim 2.4. The question whether or not P =
NP is considered the central open question of complexity theory and is also an important
question in mathematics and science at large (see Section 2.7). Most researchers believe
that P # NP since years of effort have failed to yield efficient algorithms for NP-
complete problems.

2.1.2 Nondeterministic Turing machines

The class NP can also be defined using a variant of Turing machines called nondetermin-
istic Turing machines (abbreviated NDTM). In fact, this was the original definition, and
the reason for the name NP, which stands for nondeterministic polynomial time. The
only difference between an NDTM and a standard TM (as defined in Section 1.2) is that
an NDTM has two transition functions 8y and §1, and a special state denoted by g,ccept-
When an NDTM M computes a function, we envision that at each computational step
M makes an arbitrary choice as to which of its two transition functions to apply. For
every input x, we say that M (x) = 1 if there exists some sequence of these choices (which
we call the nondeterministic choices of M) that would make M reach g,ccepr On input x.
Otherwise—if every sequence of choices makes M halt without reaching g,cc.pt—then
we say that M (x) = 0. We say that M runs in 7T'(n) time if for every input x € {0, 1}*
and every sequence of nondeterministic choices, M reaches either the halting state or
Gaccept Within T'(Jx|) steps.

Definition 2.5 For every function 7 : N — N and L C {0, 1}*, we say that L €
NTIME(T (n)) if there is a constant ¢ > 0 and a ¢ - T'(n)-time NDTM M such that for
everyx € {0, 1}*, x e L & M(x) = 1. o

The next theorem gives an alternative characterization of NP as the set of languages
computed by polynomial-time nondeterministic Turing machines.

Theorem 2.6 NP = U ..yNTIME (). o
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Proor: The main idea is that the sequence of nondeterministic choices made by an
accepting computation of an NDTM can be viewed as a certificate that the input is in
the language, and vice versa.

Suppose p : N — Nisapolynomial and L is decided by a NDTM N that runs in time
p(n). For every x € L, there is a sequence of nondeterministic choices that makes N
reach g,ccept On input x. We can use this sequence as a certificate for x. This certificate
has length p(|x]) and can be verified in polynomial time by a deterministic machine,
which simulates the action of N using these nondeterministic choices and verifies that
it would have entered g,ccept after using these nondeterministic choices. Thus, L € NP
according to Definition 2.1.

Conversely, if L € NP according to Definition 2.1, then we describe a polynomial-
time NDTM N that decides L. On input x, it uses the ability to make nondeterministic
choices to write down a string u of length p(|x|). (Concretely, this can be done by having
transition §y correspond to writing a 0 on the tape and transition §; correspond to writing
a 1.) Then it runs the deterministic verifier M of Definition 2.1 to verify that u is a valid
certificate for x, and if so, enters gaccept. Clearly, N enters gaccept on x if and only if
a valid certificate exists for x. Since p(n) = O(n°) for some ¢ > 1, we conclude that
L e NTIME(»¢). R

As is the case with deterministic TMs, NDTMs can be easily represented as strings,
and there exists a universal nondeterministic Turing machine (see Exercise 2.6). In fact,
using nondeterminism, we can even make the simulation by a universal TM slightly more
efficient.

One should note that, unlike standard TMs, NDTMs are not intended to model
any physically realizable computation device.

2.2 REDUCIBILITY AND NP-COMPLETENESS

It turns out that the independent set problem is at least as hard as any other language
in NP: If it has a polynomial-time algorithm then so do all the problems in NP. This
fascinating property is called NP-hardness. Since most scientists conjecture that NP
P, the fact that a language is NP-hard can be viewed as evidence that it cannot be
decided in polynomial time.

How can we prove that a language C is at least as hard as some other language B?
The crucial tool we use is the notion of a reduction (see Figure 2.1).

Definition 2.7 (Reductions, NP-hardness and NP-completeness) A language L <
{0, 1}* is polynomial-time Karp reducible to a language L' < {0, 1}* (sometimes
shortened to just “polynomial-time reducible”), denoted by L <, L', if there is
a polynomial-time computable function f : {0, 1}* — {0, 1}* such that for every
x € {0, 1}*,x € L if and only if f(x) € L'.

We say that L' is NP-hard if L <, L' for every L € NP. We say that L’ is
NP-complete if L' is NP-hard and L’ € NP.

Some texts use the names “many-to-one reducibility” or “polynomial-time mapping
reducibility” instead of “polynomial-time Karp reducibility.”
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Algorithm for L

Input: x f(x)
—_— —> | Algorithm for L’

output:
1iff f(x) in L’

Figure 2.1. A Karp reduction from L to L is a polynomial-time function fthat maps strings in L to strings in L’
and strings in L = {0, 1}* \ L to strings in L’. It can be used to transform a polynomial-time TM M’ that decides
L" into a polynomial-time TM M for L by setting M(x) = M’ (f(x)).

The important (and easy to verify) property of polynomial-time reducibility is that
if L <, L'and L’ € P then L € P—see Figure 2.1. This is why we say in this case that L’
is at least as hard as L, as far as polynomial-time algorithms are concerned. Note that
<p is a relation among languages, and part 1 of Theorem 2.8 shows that this relation
is transitive. Later we will define other notions of reduction, and many will satisty
transitivity. Part 2 of the theorem suggests the reason for the term NP-hard—namely,
an NP-hard languages is at least as hard as any other NP language. Part 3 similarly
suggests the reason for the term NP-complete: to study the P versus NP question it
suffices to study whether any NP-complete problem can be decided in polynomial time.

Theorem 2.8

1. (Transitivity) If L <, L'and L' <, L”, then L <, L".

2. Iflanguage L is NP-hard and L € P, then P = NP.

3. Iflanguage L is NP-complete, then L € P if and only if P = NP. o

Proofr: The main observation underlying all three parts is that if p, g are two functions
that grow at most as n¢ and n¢, respectively, then composition p(g(n)) grows as at most
n°® which is also polynomial. We now prove part 1 and leave the others as simple
exercises.

If f1 is a polynomial-time reduction from L to L’ and f, is a reduction from L’ to
L”, then the mapping x > f>(f1(x)) is a polynomial-time reduction from L to L” since
f2(f1(x)) takes polynomial time to compute given x. Finally, f>(fi(x)) € L" iff fi(x) € L,
which holds iffx € L.

Do NP-complete languages exist? In other words, does NP contain a single lan-
guage that is as hard as any other language in the class? There is a simple example of
such a language:

Theorem 2.9 The following language is NP-complete:
TMSAT = {{a,x,1",1") : Ju € {0, 1}" s.t. My, outputs 1 on input (x,u) within t steps}
where M, denotes the (deterministic) TM represented by the string a.” o

2 Recall that 1% denotes the string consisting of k bits, each of them 1. Often in complexity theory we include

the string 1¥ in the input to allow a polynomial TM to run in time polynomial in k.
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ProoF: Once you internalize the definition of NP, the proof of Theorem 2.9 is straight-
forward. Let L be an NP-language. By Definition 2.1, there is a polynomial p and a
verifier TM M such that x € L iff there is a string u € {0, 1}’(D satisfying M (x,u) = 1
and M runs in time g(n) for some polynomial g. To reduce L to TMSAT, we simply map
every string x € {0, 1}* to the tuple ( M,,x, 1P(XD 190"y where m = |x| + p(Jx|) and
M denotes the representation of M as a string. This mapping can clearly be performed
in polynomial time and by the definition of TMSAT and the choice of M,

( M, x, 1!7(\)6\)’ 1t](m)> c TMSAT <
Elue{o’”p(\xl) s.t. M (x, u) outputs 1 within g(m) steps < x € L

TMSAT is not a very useful NP-complete problem since its definition is intimately
tied to the notion of the Turing machine. Hence the fact that TMSAT is NP-complete
does not provide much new insight. In Section 2.3, we show examples of more “natural”
NP-complete problems.

2.3 THE COOK-LEVIN THEOREM: COMPUTATION IS LOCAL

Around 1971, Cook and Levin independently discovered the notion of NP-
completeness and gave examples of combinatorial NP-complete problems whose
definition seems to have nothing to do with Turing machines. Soon after, Karp showed
that NP-completeness occurs widely and many problems of practical interest are NP-
complete. To date, thousands of computational problems in a variety of disciplines have
been shown to be NP-complete.

2.3.1 Boolean formulas, CNF, and SAT

Some of the simplest examples of NP-complete problems come from propositional logic.
A Boolean formula over the variables uy, . . ., u, consists of the variables and the logical
operators AND (A), OR (Vv), and NOT (—). For example, (11 Aup) V (up Auz) Vv (u3 Auq)
is a Boolean formula. If ¢ is a Boolean formula over variables uy, . . ., u,,and z € {0, 1}",
then ¢(z) denotes the value of ¢ when the variables of ¢ are assigned the values z (where
we identify 1 with TRUE and O with FALSE). A formula ¢ is satisfiable if there exists some
assignment z such that ¢(z) is TRUE. Otherwise, we say that ¢ is unsatisfiable.

The above formula (11 Aup) Vv (u2 Ausz) V (U3 Auq) is satisfiable, since the assignment
u; = 1,up = 0,u3z = 1 satisfies it. In general, an assignement u; = z1,uy = 72,U3 = 23
satisfies the formula iff at least two of the z;’s are 1.

A Boolean formula over variables u1,...,u, is in CNF form (shorthand for Con-
junctive Normal Form) if it is an AND of OR’s of variables or their negations. For
example, the following is a 3CNF formula: (here and elsewhere, iz; denotes —u;)

(ur VuyvVuz) A(up vVuzVug) AUV usV i)
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More generally, a CNF formula has the form

/\ \/"ii

i i

where each vi; is either a variable uy or its negation u;. The terms vj; are called the
literals of the formula and the terms (Vjvi;) are called its clauses. A kCNF is a CNF
formula in which all clauses contain at most k literals. We denote by SAT the lan-
guage of all satisfiable CNF formulae and by 3SAT the language of all satisfiable 3CNF
formulae.?

2.3.2 The Cook-Levin Theorem

The following theorem provides us with our first natural NP-complete problems.

Theorem 2.10 (Cook-Levin Theorem [Coo71, Lev73])

1.  SAT is NP-complete.
2. 3SAT is NP-complete.

We now prove Theorem 2.10 (an alternative proof, using the notion of Boolean
circuits, is described in Section 6.1). Both SAT and 3SAT are clearly in NP, since a
satisfying assignment can serve as the certificate that a formula is satisfiable. Thus we
only need to prove that they are NP-hard. We do so by (a) proving that SAT is NP-
hard and then (b) showing that SAT is polynomial-time Karp reducible to 3SAT. This
implies that 3SAT is NP-hard by the transitivity of polynomial-time reductions. Part (a)
is achieved by the following lemma.

Lemma 2.11 SAT is NP-hard. o

To prove Lemma2.11, we have to show how to reduce every NP language L to SAT.
In other words, we need a polynomial-time transformation that turns any x € {0, 1}*
into a CNF formula ¢, such that x € L iff ¢, is satisfiable. Since we know nothing about
the language L except that it is in NP, this reduction has to rely only upon the definition
of computation and express it in some way using a Boolean formula.

2.3.3 Warmup: Expressiveness of Boolean formulas

As a warmup for the proof of Lemma 2.11, we show how to express various conditions
using CNF formulae.

3 Strictly speaking, a string representing a Boolean formula has to be well-formed: Strings such as u; A Aup do
not represent any valid formula. As usual, we ignore this issue since it is easy to identify strings that are not
well-formed and decide that such strings represent some fixed formula.
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EXAMPLE 2.12 (Expressing equality of strings)

The formula (x; Vv y1) A (x7 V y1) is in CNF form. It is satisfied by only those values of
x1,y1 that are equal. Thus, the formula

VYD AXLVYD A AXpVY) AXnVyn)

is satisfied by an assignment if and only if each x; is assigned the same value as y;.

Thus, though = is not a standard Boolean operator like v or A, we will use it as a
convenient shorthand since the formula ¢; = ¢; is equivalent to (in other words, has
the same satisfying assignments as) (¢1 V ¢2) A (¢1 V ¢2).

In fact, CNF formulae of exponential size can express every Boolean function, as
shown by the following simple claim.

Claim 2.13 (Universality of AND, OR, NOT) For every Boolean function f : {0, 1}* —
{0, 1}, there is an €-variable CNF formula ¢ of size 02¢ such that ¢(u) = f @) for every
u € {0, 1}, where the size of a CNF formula is defined to be the number of AJN symbols
it contains. o

Proor SKetcH: For every v € {0, 1}%, it is not hard to see that there exists a clause
Cv(z1,22,...,2¢) in £ variables such that C,(v) = 0 and C,(u) = 1 for every u # v. For
example, if v = (1, 1,0, 1), the corresponding clause is 71 V Z2 V 23 V Z4.

We let ¢ be the AND of all the clauses C, for v such that f(v) = 0. In other words,

(p: /\ CV(ZI’ZZ""’ZE)
vif (v)=0

Note that ¢ has size at most £2¢. For every u such that f(«) = 0 it holds that C,,(u) =0
and hence ¢(u) is also equal to 0. On the other hand, if f(u) = 1, then C,(u) = 1 for
every v such that f(v) = 0 and hence ¢(u) = 1. We get that for every u, () = f(u). R

In this chapter, we will use Claim 2.13 only when the number of variables is some
fixed constant.

2.3.4 Proof of Lemma 2.11

Let L be an NP language. By definition, there is polynomial time TM M such that for
every x € {0, 1}*, x € L & M(x,u) = 1 for some u € {0, 1}’ where p : N — N is
some polynomial. We show L is polynomial-time Karp reducible to SAT by describing a
polynomial-time transformation x — ¢, from strings to CNF formulae such that x € L
iff ¢, is satisfiable. Equivalently,

@r € SAT iff Ju e {0, 1M st. M(xou) =1 2.1)

(where o denotes concatenation).*

4 Because the length p(|x|) of the second input u is easily computable, we can represent the pair (x, u) simply by
X o u, without a need to use a “marker symbol” between x and u.
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How can we construct such a formula ¢, ? The trivial idea is to use the transformation
of Claim 2.13 on the Boolean function that maps u € {0, 1}**D to M (x, u). This would
give a CNF formula v, such that ¥, () = M (x, u) for every u € {0, 1}’"_ Thus a string
u such that M (x,u) = 1 exists if and only if ¥, is satisfiable. But this trivial idea is not
useful for us, since the size of the formula /, obtained from Claim 2.13 can be as large
as p(|x)2P*P . To get a smaller formula, we use the fact that M runs in polynomial time,
and that each basic step of a Turing machine is highly /ocal (in the sense that it examines
and changes only a few bits of the machine’s tapes). We express the correctness of these
local steps using smaller Boolean formulae.

In the course of the proof, we will make the following simplifying assumptions
about the TM M: (i) M only has two tapes—an input tape and a work/output tape—and
(ii) M is an oblivious TM in the sense that its head movement does not depend on the
contents of its tapes. That is, M’s computation takes the same time for all inputs of size
n, and for every i the location of M’s heads at the ith step depends only on i and the
length of the input.

We can make these assumptions without loss of generality because for every T'(n)-
time TM M there exists a two-tape oblivious TM M computing the same function in
O(T(n)?) time (see Remark 1.7 and Exercise 1.5).> Thus in particular, if L is in NP,
then there exists a two-tape oblivious polynomial-time TM M and a polynomial p such
that

xeL s ue{0,1PFD st Mxou) =1 (22)

Note that because M is oblivious, we can run it on the trivial input (x, 0Py to
determine the precise head position of M during its computation on every other input
of the same length. We will use this fact later on.

Denote by Q the set of M’s possible states and by I its alphabet. The snapshot of
M’s execution on some input y at a particular step i is the triple (a,b,q) € T' x I x QO such
thata, b are the symbols read by M’s heads from the two tapes and g is the state M isin at
the ith step (see Figure 2.2). Clearly the snapshot can be encoded as a binary string. Let
¢ denote the length of this string, which is some constant depending upon |Q| and |T'|.

For every y € {0, 1}*, the snapshot of M’s execution on input y at the ith step
depends on (a) its state in the (i — 1)st step and (b) the contents of the current cells of
its input and work tapes.

The insight at the heart of the proof concerns the following thought exercise. Sup-
pose somebody were to claim the existence of some u satisfying M (x o u) = 1 and, as
evidence, present you with the sequence of snapshots that arise from M’s execution on
x o u. How can you tell that the snapshots present a valid computation that was actually
performed by M?

Clearly, it suffices to check that for each i < T(n), the snapshot z; is correct
given the snapshots for the previous i — 1 steps. However, since the TM can only
read/modify one bit at a time, to check the correctness of z; it suffices to look at only
two of the previous snapshots. Specifically, to check z; we need to only look at the
following: z;1,yinputpos()s Zprevi) (see Figure 2.3). Here y is shorthand for x o u;

> In fact, with some more effort, we even simulate a nonoblivious 7'(n)-time TM by an oblivious TM running
in O(T (n)log T (n))-time; see Exercise 1.6. This oblivious machine may have more than two tapes, but the
following proof below easily generalizes to this case.
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Figure 2.2. A snapshot of a TM contains the current state and symbols read by the TM at a particular step. If
at the ith step M reads the symbols 0,1 from its tapes and is in the state g7, then the snapshot of M at the ith
step is (0,1, q7).

1 inputpos(i)

input:| | | | | |

woms [ [ = [ [ = [ [ ] = [
1 prev(i) i-1 i T

Figure 2.3. The snapshot of M at the ith step depends on its previous state (contained in the snapshot at the
(i — 1)st step), and the symbols read from the input tape, which is in position inputpos (i), and from the work
tape, which was last written to in step prev ().

inputpos (i) denotes the location of M’s input tape head at the ith step (recall that the
input tape is read-only, so it contains x o u throughout the computation); and prev (i)
is the last step before i when M’s head was in the same cell on its work tape that it is
on during step i.° The reason this small amount of information suffices to check the
correctness of z; is that the contents of the current cell have not been affected between
step prev(i) and step i.

In fact, since M is a deterministic TM, for every triple of values to
Zi—1,Yinputpos()» Zprev(), there is at most one value of z; that is correct. Thus there
is some function F (derived from M’s transition function) that maps {0, 1}>“*! to {0, 1}¢
such that a correct z; satisfies

i = F(Zi—l,Zprev(i)aYinputpos(i)) (2-3)

6 If i is the first step that M visits a certain location, then we define prev() = 1.
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Because M is oblivious, the values inputpos(i) and prev(i) do not depend on
the particular input y. Also, as previously mentioned, these indices can be computed in
polynomial-time by simulating M on a trivial input.

Now we turn the above thought exercise into a reduction. Recall that by (2.2),
an input x € {0, 1}" is in L if and only if M(x o u) = 1 for some u € {0, 1}’ The
previous discussion shows this latter condition occurs if and only if there exists a string
y € {0, 1P and a sequence of strings z1,...,27(m) € {0, 1} (where T'(n) is the
number of steps M takes on inputs of length n + p(n)) satistying the following four
conditions:

1. The first n bits of y are equal to x.
The string z; encodes the initial snapshot of M. That is, z; encodes the triple (>
,0,¢start) Where > is the start symbol of the input tape, O is the blank symbol, and
gstart 1s the initial state of the TM M.

3. Foreveryie{2,...,T(m)}, zi = F(zi-1,2i nputpos (s Zprev()-

4. The last string z7(,) encodes a snapshot in which the machine halts and outputs 1.

The formula ¢, will take variables y € {0, 1}"*?" and z € {0, 1}*7 and will verify
that y, z satisfy the AND of these four conditions. Thus x € L < ¢, € SAT and so all
that remains is to show that we can express ¢, as a polynomial-sized CNF formula.

Condition 1 can be expressed as a CNF formula of size 4n (see Example 2.12).
Conditions 2 and 4 each depend on ¢ variables and hence by Claim 2.13 can be expressed
by CNF formulae of size ¢2¢. Condition 3, which is an AND of T'(n) conditions each
depending on at most 3c + 1 variables, can be expressed as a CNF formula of size
at most T'(n)(3c + 1)23¢t1. Hence the AND of all these conditions can be expressed
as a CNF formula of size d(n + T (n)) where d is some constant depending only on
M. Moreover, this CNF formula can be computed in time polynomial in the running
time of M.

2.3.5 Reducing SAT to 3SAT

To complete the proof of Theorem 2.10, it suffices to prove the following lemma:
Lemma 2.14 SAT <, 35AT. o

Proor: We give a transformation that maps each CNF formula ¢ into a 3CNF formula
¥ such that y is satisfiable if and only if ¢ is. We demonstrate first the case that ¢ is a
4CNF. Let C be a clause of ¢, say C = u1 Vv up V u3 VvV us. We add a new variable z to
the ¢ and replace C with the pair of clauses C; = u; vz Vzand Co = U3 V ug V2.
Clearly, if uy v up V u3 V u4 is true, then there is an assignment to z that satisfies both
ui Vup Vv zand usz Vv uy vz and vice versa: If C is false, then no matter what value we
assign to z either C; or C; will be false. The same idea can be applied to a general clause
of size 4 and, in fact, can be used to change every clause C of size k (for k > 3) into an
equivalent pair of clauses C of size k — 1 and C; of size 3 that depend on the k variables
of C and an additional auxiliary variable z. Applying this transformation repeatedly
yields a polynomial-time transformation of a CNF formula ¢ into an equivalent 3CNF
formula . &
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2.3.6 More thoughts on the Cook-Levin Theorem

The Cook-Levin Theorem is a good example of the power of abstraction. Even though
the theorem holds regardless of whether our computational modelis the C programming
language or the Turing machine, it may have been considerably more difficult to discover
in the former context.

The proof of the Cook-Levin Theorem actually yields a result that is a bit stronger
than the theorem’s statement:

1.  We can reduce the size of the output formula ¢, if we use the efficient simulation of
a standard TM by an oblivious TM (see Exercise 1.6), which manages to keep the
simulation overhead logarithmic. Then for every x € {0, 1}*, the size of the formula ¢,
(and the time to compute it) is O(T log T'), where T is the number of steps the machine
M takes on input x (see Exercise 2.12).

2. The reduction f from an NP-language L to SAT presented in Lemma 2.11 not only
satisfied that x € L < f(x) € SAT but actually the proof yields an efficient way to
transform a certificate for x to a satisfying assignment for f(x) and vice versa. We call a
reduction with this property a Levin reduction. One can also modify the proof slightly
(see Exercise 2.13) so thatit actually supplies us with a one-to-one and onto map between
the set of certificates for x and the set of satisfying assignments for f(x), implying that
they are of the same size. A reduction with this property is called parsimonious. Most
of the known NP-complete problems (including all the ones mentioned in this chapter)
have parsimonious Levin reductions from all the NP languages. As we will see later
in Chapter 17, this fact is useful in studying the complexity of counting the number of
certificates for an instance of an NP problem.

Why 3SAT?

The reader may wonder why the fact that 3SAT is NP-complete is so much more inter-
esting than the fact that, say, the language TMSAT of Theorem 2.9 is NP-complete. One
reason is that 3SAT is useful for proving the NP-completeness of other problems: It
has very minimal combinatorial structure and thus is easy to use in reductions. Another
reason is that propositional logic has had a central role in mathematical logic, which
is why Cook and Levin were interested in 3SAT in the first place. A third reason is
its practical importance: 3SAT is a simple example of constraint satisfaction problems,
which are ubiquitous in many fields including artificial intelligence.

2.4 THE WEB OF REDUCTIONS

Cook and Levin had to show how every NP language can be reduced to SAT. To prove
the NP-completeness of any other language L, we do not need to work as hard: by
Theorem 2.8 it suffices to reduce SAT or 3SAT to L. Once we know that L is NP-
complete, we can show that an NP-language L' is in fact NP-complete by reducing L to
L'. This approach has been used to build a “web of reductions” and show that thousands
of interesting languages are in fact NP-complete. We now show the NP-completeness
of a few problems. More examples appear in the exercises (see Figure 2.4).
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Figure 2.4. Web of reductions between the NP-completeness problems described in this chapter and the
exercises. Thousands more are known.

Recall the problem of planning a dinner party where every pair of guests is on
speaking terms, formalized in Example 0.1 as the language

INDSET = {{G, k) : G has independent set of size k}
Theorem 2.15 INDSET is NP-complete. o

ProoF: Asshownin Example 2.2, INDSET is in NP, and so we only need to show that it
is NP-hard, which we do by reducing 3SAT to INDSET. Specifically, we will show how
to transform in polynomial time every m-clause 3CNF formula ¢ into a 7m-vertex graph
G such that ¢ is satisfiable if and only if G has an independent set of size at least m.

The graph G is defined as follows (see Figure 2.5): We associate a cluster of 7
vertices in G with each clause of ¢. The vertices in a cluster associated with a clause C
correspond to the seven possible satisfying partial assignments to the three variables on
which C depends (we call these partial assignments, since they only give values for some
of the variables). For example, if C is u; V us V u7, then the seven vertices in the cluster
associated with C correspond to all partial assignments of the form u; = a,up = b,u3 =
¢ for a binary vector (a,b,c) # (1,1,0). (If C depends on less than three variables,
then we repeat one of the partial assignments and so some of the seven vertices will
correspond to the same assignment.) We put an edge between two vertices of G if they
correspond to inconsistent partial assignments. Two partial assignments are consistent
if they give the same value to all the variables they share. For example, the assignment
up = 0, u17 = 1, upe = 1 is inconsistent with the assignment up = 1, us = 0, u7 = 1
because they share a variable (i) to which they give a different value. In addition, we
put edges between every two vertices that are in the same cluster.
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Figure 2.5. We transform a 3CNF formula ¢ with m clauses into a graph G with 7m vertices as follows: each
clause C is associated with a cluster of 7 vertices corresponding to the 7 possible satisfying assignments to
the variables C depends on. We put edges between any two vertices in the same cluster and any two vertices
corresponding to inconsistent partial assignments. The graph G will have an independent set of size m if and
only if ¢ was satisfiable. The figure above contains only a sample of the edges. The three circled vertices form

an

independent set.

Clearly, transforming ¢ into G can be done in polynomial time, and so all that

remains to show is that ¢ is satisfiable iff G has an independent set of size m:
e Suppose that ¢ has a satisfying assignment u. Define a set S of m of G’s vertices as

follows: For every clause C of ¢ put in S the vertex in the cluster associated with C
that corresponds to the restriction of u to the variables C depends on. Because we only
choose vertices that correspond to restrictions of the assignment u, no two vertices of §
correspond to inconsistent assignments and hence S is an independent set of size m.
Suppose that G has an independent set S of size m. We will use S to construct a satisfying
assignment u for ¢. We define u as follows: For every i € [n], if there is a vertex in S
whose partial assignment gives a value a to u;, then set u; = a; otherwise, set u; = 0.
This is well defined because S is an independent set, and hence each variable u; can get
at most a single value by assignments corresponding to vertices in S. On the other hand,
because we put all the edges within each cluster, S can contain at most a single vertex
in each cluster, and hence there is an element of S in every one of the m clusters. Thus,
by our definition of u, it satisfies all of ¢’s clauses. B

We let 0/1 IPROG be the set of satisfiable 0/1 Integer programs, as defined in

Example 2.3. That is, a set of linear inequalities with rational coefficients over variables

uy

...,y isin 0/1 TPROG if there is an assignment of numbers in {0, 1} to uy, ..., u,

that satisfies it.

Theorem 2.16 0/1 IPROG is NP-complete. o

Proor: 0/1 IPROG is clearly in NP since the assignment can serve as the certificate.
Toreduce SAT to 0/1 IPROG, note that every CNF formula can be easily expressed as
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Figure 2.6. Reducing SAT to dHAMPATH. A formula ¢ with n variables and m clauses is mapped to a graph G
that has m vertices corresponding to the clauses and n doubly linked chains, each of length 4m, corresponding
to the variables. Traversing a chain left to right corresponds to setting the variable to True, while traversing it
right to left corresponds to setting it to False. Note that in the figure every Hamiltonian path that takes the edge
from u to c19 must immediately take the edge from cqq to v, as otherwise it would get “stuck” the next time
it visits v.

an integer program by expressing every clause as an inequality. For example, the clause
ur Vupvuzcanbeexpressedasu; + (1 —up) + (1 —u3z) > 1. 1

A Hamiltonian path in a directed graph is a path that visits all vertices exactly once.
Let dHAMPATH denote the set of all directed graphs that contain such a path.

Theorem 2.17 dHAMPATH is NP-complete. o

Proor: dHAMPATH is in NP since the ordered list of vertices in the path can serve as
a certificate. To show that dHAMPATH is NP-hard, we show a way to map every CNF
formula ¢ into a graph G such that ¢ is satisfiable if and only if G has a Hamiltonian
path (i.e., a path that visits all of G’s vertices exactly once).

The reduction is described in Figure 2.6. The graph G has (1) m vertices for each
of ¢’s clauses ci,...,cm, (2) a special starting vertex vy, and ending vertex venq, and
(3) n “chains” of 4m vertices corresponding to the n variables of ¢. A chain is a set of
vertices v, ..., V4, such that for every i € [4m — 1], v; and v;;1 are connected by two
edges in both directions.

We put edges from the starting vertex vy, to the two extreme points of the first
chain. We also put edges from the extreme points of the jth chain to the extreme points
to the (j + 1)th chain for every j € [n — 1]. We put an edge from the extreme points of
the nth chain to the ending vertex veyg.

In addition to these edges, for every clause C of ¢, we put edges between the chains
corresponding to the variables appearing in C and the vertex v¢ corresponding to C in
the following way: If C contains the literal u;, then we take two neighboring vertices
v, vi+1 in the jth chain and put an edge from v; to C and from C to v;41. If C contains
the literal u;, then we connect these edges in the opposite direction (i.e., v;41 to C and
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C to v;). When adding these edges, we never “reuse” a link v;, v;11 in a particular chain
and always keep an unused link between every two used links. We can do this since
every chain has 4m vertices, which is more than sufficient for this. We now prove that
¢ € SAT & G € dHAMPATH:
(p € SAT = G € dHAMPATH): Suppose that ¢ has a satisfying assignment uq, ..., u,.
We will show a path that visits all the vertices of G. The path will start at vy, travel
through all the chains in order, and end at v,,4. For starters, consider the path that
travels the jth chain in left-to-right order if u; = 1 and travels it in right-to-left order if
u; = 0. This path visits all the vertices except for those corresponding to clauses. Yet, if
u is a satisfying assignment then the path can be easily modified to visit all the vertices
corresponding to clauses: For each clause C, there is at least one literal that is true, and
we can use one link on the chain corresponding to that literal to “skip” to the vertex v¢
and continue on as before.

(G € dHAMPATH = ¢ € SAT): Suppose that G has an Hamiltonian path P. We first
note that the path P must start in v,y (as it has no incoming edges) and end at venq (as
it has no outgoing edges). Furthermore, we claim that P needs to traverse all the chains
in order and, within each chain, traverse it either in left-to-right order or right-to-left
order. This would be immediate if the path did not use the edges from a chain to the
vertices corresponding to clauses. The claim holds because if a Hamiltonian path takes
the edge u — w, where u is on a chain and w corresponds to a clause, then it must
at the next step take the edge w — v, where v is the vertex adjacent to « in the link.
Otherwise, the path will get stuck (i.e., will find every outgoing edge already taken) the
next time it visits v; see Figure 2.1. Now, define an assignment uq, .. ., u, to ¢ as follows:
u; = 1if P traverses the jth chain in left-to-right order, and u; = 0 otherwise. It is not
hard to see that because P visits all the vertices corresponding to clauses, u1,...,u, is a
satisfying assignment for ¢. l

In praise of reductions

Though originally invented as part of the theory of NP-completeness, the polynomial-
time reduction (together with its first cousin, the randomized polynomial-time reduction
defined in Section 7.6) has led to a rich understanding of complexity above and beyond
NP-completeness. Much of complexity theory and cryptography today (thus, many
chapters of this book) consists of using reductions to make connections between
disparate complexity theoretic conjectures. Why do complexity theorists excel at reduc-
tions but not at actually proving lower bounds on Turing machines? Maybe human
creativity is more adaptible to gadget-making and algorithm-design (after all, a reduc-
tion is merely an algorithm to transform one problem into another) than to proving
lower bounds on Turing machines.

2.5 DECISION VERSUS SEARCH

We have chosen to define the notion of NP using Yes/No problems (“Is the given
formula satisfiable?”) as opposed to search problems (“Find a satisfying assignment to
this formula if one exists”). Clearly, the search problem is harder than the corresponding
decision problem, and so if P # NP, then neither one can be solved for an NP-complete
problem. However, it turns out that for NP-complete problems they are equivalent in
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the sense that if the decision problem can be solved (and hence P = NP), then the
search version of any NP problem can also be solved in polynomial time.

Theorem 2.18 Suppose that P = NP. Then, for every NP language L and a verifier TM
M for L (as per Definition 2.1), there is a polynomial-time TM B that on input x € L
outputs a certificate for x (with respect to the language L and TM M). o

Proor: We need to show that if P = NP, then for every polynomial-time TM M and
polynomial p(n), there is a polynomial-time TM B with the following property: for
every x € {0,1}", if there is u € {0,1}’" such that M (x,u) = 1 (i.e., a certificate that x
is in the language verified by M) then |B(x)| = p(n) and M (x, B(x)) = 1.

We start by showing the theorem for the case of SAT. In particular, we show that
given an algorithm A that decides SAT, we can come up with an algorithm B that on
input a satisfiable CNF formula ¢ with #n variables, finds a satisfying assignment for ¢
using 2n + 1 calls to A and some additional polynomial-time computation.

The algorithm B works as follows: We first use A to check that the input formula ¢
is satisfiable. If so, we first substitute x; = 0 and then x; = 1 in ¢ (this transformation,
which simplifies and shortens the formula a little and leaves a formula with n — 1 vari-
ables, can certainly be done in polynomial time) and then use A to decide which of the
two is satisfiable (at least one of them is). Say the first is satisfiable. Then we fix x; =0
from now on and continue with the simplified formula. Continuing this way, we end up
fixing all n variables while ensuring that each intermediate formula is satisfiable. Thus
the final assignment to the variables satisfies ¢.

To solve the search problem for an arbitrary NP-language L, we use the fact that
the reduction of Theorem 2.10 from L to SAT is actually a Levin reduction. This means
that we have a polynomial-time computable function f such that not only x € L &
f(x) € SAT but actually we can map a satisfying assignment of f(x) into a certificate for
x. Therefore, we can use the algorithm above to come up with an assignment for f(x)
and then map it back into a certificate for x. H

The proof of Theorem 2.18 shows that SAT is downward self-reducible, which means
that given an algorithm that solves SAT on inputs of length smaller than n we can solve
SAT oninputs of length n. This property of SAT will be useful a few times in the rest of the
book. Using the Cook-Levin reduction, one can show that all NP-complete problems
have a similar property.

2.6 CONP, EXP, AND NEXP

Now we define some additional complexity classes related to P and NP.

2.6.1 coNP

If L C {0, 1}* is a language, then we denote by L the complement of L. That is, L=
{0, 1}*\ L. We make the following definition:

Definition 2.19 coNP = {L 'L e NP}. S
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coNP is not the complement of the class NP. In fact, coNP and NP have a nonempty
intersection, since every language in P is in NP N coNP (see Exercise 2.23). The fol-
lowing is an example of a coNP language: SAT = {¢ : ¢ is not satisfiable} . Students
sometimes mistakenly convince themselves that SAT is in NP. They have the following
polynomial time NDTM in mind: On input ¢, the machine guesses an assignment. If
this assignment does not satisfy ¢ then it accepts (i.e., goes into q,cccpr and halts), and
if it does satisfy ¢, then the machine halts without accepting. This NDTM does not do
the job: indeed, it accepts every unsatisfiable ¢, but in addition it also accepts many sat-
isfiable formulae (i.e., every formula that has a single unsatisfying assignment). That is
why pedagogically speaking we prefer the following definition of coNP (which is easily
shown to be equivalent to the first, see Exercise 2.24).

Definition 2.20 (coNP, alternative definition) For every L C {0, 1}*, we say that L €
coNP if there exists a polynomial p : N — N and a polynomial-time TM M such that
for every x € {0, 1}*,

xeL o Vue{0, )PP Mx,u) =1 ¢

Note the use of the “V” quantifier in this definition where Definition 2.1 used 3.

We can define coNP-completeness in analogy to NP-completeness: A language
is coNP-complete if it is in coNP and every coNP language is polynomial-time Karp
reducible to it.

EXAMPLE 2.21

The following language is coNP-complete:

TAUTOLOGY ={¢ : ¢ is a tautology—a Boolean formula

that is satisfied by every assignment}

It is clearly in coNP by Definition 2.20, and so all we have to show is that for every
L € coNP, L <, TAUTOLOGY. But this is easy: Just modify the Cook-Levin reduction
from L (which is in NP) to SAT. For every input x € {0, 1}* that reduction produces a
formula g, thatis satisfiable iffx € L. Now consider the formula —¢,. Itisin TAUTOLOGY
iff x € L, and this completes the description of the reduction.

It’s not hard to see that if P = NP, then NP = coNP = P (Exercise 2.25). Put
in the contrapositive: If we can show that NP # coNP, then we have shown P # NP.
Most researchers believe that NP # coNP. The intuition is almost as strong as for the
P versus NP question: It seems hard to believe that there is any short certificate for
certifying that a given formula is a TAUTOLOGY, in other words, to certify that every
assignment satisfies the formula.

2.6.2 EXP and NEXP

In Claim 2.4, we encountered the class EXP = UcleTIME(Z"C), which is the
exponential-time analog of P. The exponential-time analog of NP is the class NEXP,
defined as U.>NTIME (2").
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As was seen earlier, because every problem in NP can be solved in exponential
time by a brute force search for the certificate, P € NP € EXP C NEXP. Is there any
point to studying classes involving exponential running times? The following simple
result—providing merely a glimpse of the rich web of relations we will be establishing
between disparate complexity questions—may be a partial answer.

Theorem 2.22 [f EXP # NEXP, then P # NP. o

Proor: We prove the contrapositive: Assuming P = NP, we show EXP = NEXP.
Suppose L € NTIME(2") and NDTM M decides it. We claim that then the language

Lpad = [(x,12""c> . xe L} (2.4)

is in NP. Here is an NDTM for Lpaq: Given y, first check if there is a string z such that

y = (g, 12“‘8). If not, output O (i.e., halt without going to the state g,ccept ). If ¥ is of this
form, then simulate M on z for 21/ steps and output its answer. Clearly, the running
time is polynomial in |y|, and hence L,,q € NP. Hence if P = NP, then L,q is in P.
But if Lp,q is in P then L is in EXP: To determine whether an input x is in L, we just
pad the input and decide whether it is in Lp,q using the polynomial-time machine for
Lpaq- A

The padding technique used in this proof, whereby we transform a language by
“padding” every string in a language with a string of (useless) symbols, is also used in
several other results in complexity theory (see, e.g., Section 14.4.1). In many settings,
it can be used to show that equalities between complexity classes “scale up”; that is, if
two different types of resources solve the same problems within bound 7'(n), then this
also holds for functions 7" larger than 7. Viewed contrapositively, padding can be used
to show that inequalities between complexity classes involving resource bound 7" (n)
“scale down” to resource bound 7T (n).

Like P and NP, many complexity classes studied in this book are contained in both
EXP and NEXP.

2.7 MORE THOUGHTS ABOUT P, NP, AND ALL THAT

2.7.1 The philosophical importance of NP

At a totally abstract level, the P versus NP question may be viewed as a question about
the power of nondeterminism in the Turing machine model. Similar questions have
been completely answered for simpler models such as finite automata.

However, the certificate definition of NP also suggests that the P versus NP question
captures a widespread phenomenon of some philosophical importance (and a source
of great frustration): Recognizing the correctness of an answer is often much easier
than coming up with the answer. Appreciating a Beethoven sonata is far easier than
composing the sonata; verifying the solidity of a design for a suspension bridge is easier
(to a civil engineer anyway!) than coming up with a good design; verifying the proof
of a theorem is easier than coming up with a proof itself (a fact referred to in Godel’s
letter quoted at the start of the chapter), and so forth. In such cases, coming up with the
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right answer seems to involve exhaustive search over an exponentially large set. The P
versus NP question asks whether exhaustive search can be avoided in general. It seems
obvious to most people—and the basis of many false proofs proposed by amateurs—
that exhaustive search cannot be avoided. Unfortunately, turning this intuition into a
proof has proved difficult.

2.7.2 NP and mathematical proofs

By definition, NP is the set of languages where membership has a short certificate. This
is reminiscent of another familiar notion, that of a mathematical proof. As noticed in
the past century, in principle all of mathematics can be axiomatized, so that proofs are
merely formal manipulations of axioms. Thus the correctness of a proof is rather easy to
verify—just check that each line follows from the previous lines by applying the axioms.
In fact, for most known axiomatic systems (e.g., Peano arithmetic or Zermelo-Fraenkel
Set Theory) this verification runs in time polynomial in the length of the proof. Thus
the following problem is in NP for any of the usual axiomatic systems .A:

THEOREMS = {((p, 1") : ¢ has a formal proof of length < n in system A} .

Godel’s quote from 1956 at the start of this chapter asks whether this problem
can be solved in say quadratic time. He observes that this is a finite version of Hilbert’s
Entscheidungsproblem, which asked for an algorithmic decision procedure for checking
whether a given mathematical statement has a proof (with no upper bound specified on
the length of the proof). He points out that if THEOREMS can be solved in quadtratic time,
then the undecidability of the Entscheidungsproblem would become less depressing,
since we are usually only interested in theorems whose proof is not too long (says, fits in
a few books).

Exercise 2.11 asks you to prove that THEOREMS is NP-complete. Hence the P versus
NP question is a rephrasing of Godel’s question, which asks whether or not there is a
algorithm that finds mathematical proofs in time polynomial in the length of the proof.

Of course, you know in your guts that finding correct math proofs is far harder
than verifying their correctness. So presumably, you believe at an intuitive level that
P # NP.

2.7.3 What if P = NP?

If P = NP—specifically, if an NP-complete problem like 3SAT had a very efficient
algorithm running in say O(n?) time—then the world would be mostly a computational
Utopia. Mathematicians could be replaced by efficient theorem-discovering programs
(afact pointed out in Kurt Godel’s 1956 letter and recovered two decades later). In gen-
eral, for every search problem whose answer can be efficiently verified (or has a short
certificate of correctness), we will be able to find the correct answer or the short cer-
tificate in polynomial time. Artificial intelligence (Al) software would be perfect since
we could easily do exhaustive searches in a large tree of possibilities. Inventors and
engineers would be greatly aided by software packages that can design the perfect part
or gizmo for the job at hand. Very large scale integration (VLSI) designers will be able
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to whip up optimum circuits, with minimum power requirements. Whenever a scientist
has some experimental data, she would be able to automatically obtain the simplest
theory (under any reasonable measure of simplicity we choose) that best explains these
measurements; by the principle of Occam’s Razor the simplest explanation is likely to be
the right one.” Of course, in some cases, it took scientists centuries to come up with the
simplest theories explaining the known data. This approach can be used to also approach
nonscientific problems: One could find the simplest theory that explains, say, the list
of books from the New York Times’ bestseller list. (Of course even finding the right
definition of “simplest” might require some breakthroughs in artificial intelligence and
understanding natural language that themselves would use NP-algorithms.) All these
applications will be a consequence of our study of the polynomial hierarchy in Chapter 5.
(The problem of finding the smallest “theory” is closely related to problems like
MIN-EQ-DNF studied in Chapter 5.)

Somewhat intriguingly, this Utopia would have no need for randomness. As we
will later see, if P = NP, then randomized algorithms would buy essentially no effi-
ciency gains over deterministic algorithms; see Chapter 7. (Philosophers should ponder
this one.)

This Utopia would also come at one price: there would be no privacy in the digital
domain. Any encryption scheme would have a trivial decoding algorithm. There would
be no digital cash and no SSL, RSA, or PGP (see Chapter 9). We would just have to
learn to get along better without these, folks.

This utopian world may seem ridiculous, but the fact that we can’t rule it out shows
how little we know about computation. Taking the half-full cup point of view, it shows
how many wonderful things are still waiting to be discovered.

2.7.4 What if NP = coNP?

If NP = coNP, the consequences still seem dramatic. Mostly, they have to do with
existence of short certificates for statements that do not seem to have any. To give
an example, consider the NP-complete problem of finding whether or not a set of
multivariate polynomials has a common root (see Exercise 2.20). In other words, it is NP
complete to decide whether a system of equations of the following type has a solution:

filxt,...,x0) =0
fz(xlv' .. axl’l) = O

fm&xt, ..., x,) =0

where each f; is a polynomial of degree at most 2.
If a solution exists, then that solution serves as a certificate to this effect (of course,
we have to also show that the solution can be described using a polynomial number of

7" Occam’s Razor is a well-known principle in philosophy, but it has found new life in machine learning, a subfield

of computer science. Valiant’s Theory of the Learnable [Val84] gives mathematical basis for Occam’s Razor.
This theory is deeply influenced by computational complexity; an excellent treatment appears in the book of
Kearns and Vazirani [KV94]. If P = NP, then many interesting problems in machine learning turn out to have
polynomial-time algorithms.
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bits, which we omit). The problem of deciding that the system does not have a solution
is of course in coNP. Can we give a certificate to the effect that the system does not have
a solution? Hilbert’s Nullstellensatz Theorem seems to do that: It says that the system
is infeasible iff there is a sequence of polynomials g1,82,...,8m such that >, fig; = 1,
where 1 on the right-hand side denotes the constant polynomial 1.

What is happening? Does the Nullstellensatz prove coNP = NP? No, because the
degrees of the g;s—and hence the number of bits used to represent them—could be
exponential in n, m. (And it is simple to construct f;s for which this is necessary.)

However, if NP = coNP then there would be some other notion of a short certificate
to the effect that the system is infeasible. The effect of such a result on mathematics
could be even greater than the effect of Hilbert’s Nullstellensatz. (The Nullstellensatz
appears again in Chapters 15 and 16.)

2.7.5 Is there anything between NP and NP-complete?

NP-completeness has been an extremely useful and influential theory, since thousands
of useful problems are known to be NP-complete (and hence they are presumably not
in P). However, there remain a few interesting NP problems that are neither known
to be in P nor known to be NP-complete. For such problems, it would be nice to have
some other way to show that they are nevertheless difficult to solve, but we know of very
few ways of quantifying this. Sometimes researchers turn the more famous problems
of this type into bona fide classes of their own. Some examples are the problem of
factoring integers (used in Chapter 9) or the so-called unique games labeling problem
(Chapter 22). The complexity of these problems is related to those of many other
problems. Similarly, Papadimitriou [Pap90] has defined numerous interesting classes
between P and NP that capture the complexity of various interesting problems. The
most important is PPAD, which captures the problem of finding Nash Equilibria in
two-person games.

Sometimes we can show that some of these problems are unlikely to be NP-
complete. We do this by showing that if the problem is NP-complete, then this violates
some other conjecture (that we believe almost as much as P # NP); we’ll see such
results for the graph isomorphism problem in Section 8.1.3.

Another interesting result in Section 3.3 called Ladner’s Theorem shows that if
P +# NP, then there exist problems that are neither in P nor NP-complete.

2.7.6 Coping with NP hardness

NP-complete problems turn up in a great many applications, from flight scheduling to
genome sequencing. What do you do if the problem you need to solve turns out to be
NP-complete? At the outset, the situation looks bleak: If P £ NP, then there simply
does not exist an efficient algorithm to solve such a problem.® However, there may still
be some hope: NP-completeness only means that (assuming P # NP) the problem does

8 Not however that sometimes simple changes in the problem statement can dramatically change its complexity.

Therefore, modeling a practical situation with an abstract problem requires great care; one must take care not
to unnecessarily model a simple setting with an NP-complete problem.
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not have an algorithm that solves it exactly on every input. But for many applications,
an approximate solution on some of the inputs might be good enough.

A case in point is the traveling salesperson problem (TSP), of computing: Given a
list of pairwise distances between 7 cities, find the shortest route that travels through
all of them. Assume that you are indeed in charge of coming up with travel plans for
traveling salespeople that need to visit various cities around your country. Does the fact
that TSP is NP-complete means that you are bound to do a hopelessly suboptimal job?
This does not have to be the case.

First note that you do not need an algorithm that solves the problem on a// possible
lists of pairwise distances. We might model the inputs that actually arise in this case as
follows: The n cities are points on a plane, and the distance between a pair of cities is
the distance between the corresponding points (we are neglecting here the difference
between travel distance and direct/arial distance). It is an easy exercise to verify that
not all possible lists of pairwise distances can be generated in such a way. We call those
that do Euclidean distances. Another observation is that computing the exactly optimal
travel plan may not be so crucial. If you could always come up with a travel plan that is
at most 1% longer than the optimal, this should be good enough.

It turns out that neither of these observations on its own is sufficient to make
the problem tractable. The TSP problem is still NP-complete even for Euclidean dis-
tances. Also if P # NP, then TSP is hard to approximate within any constant factor.
However, combining the two observations together actually helps: For every € there
is a poly(n(log n)?(1/9))-time algorithm that given Euclidean distances between # cities
comes up with a tour that is at most a factor of (1 + €) worse than the optimal tour
[Aro96].

Thus, discovering that your problem is NP-complete should not be cause for imme-
diate despair. Rather you should view this as indication that a more careful modeling
of the problem is needed, letting the literature on complexity and algorithms guide you
as to what features might make the problem more tractable. Alternatives to worst-case
exact computation are explored in Chapters 18 and 11, which investigate average-case
complexity and approximation algorithms respectively.

2.7.7 Finer explorations of time complexity

We have tended to focus the discussion in this chapter on the difference between poly-
nomial and nonpolynomial time. Researchers have also explored finer issues about time
complexity. For instance, consider a problem like INDSET. We believe that it cannot
be solved in polynomial time. But what exactly is its complexity? Is it n?1°8" or o
or 2/199 Most researchers believe it is actually 2%, The intuitive feeling is that the
trivial algorithm of enumerating all possible subsets is close to optimal.

It is useful to test this intuition when the size of the optimum independent set is at
most k. The trivial algorithm of enumerating all k-size subsets of vertices takes (Z) ~ nk
time when k£ <« n. (In fact, think of £ as an arbitrarily large constant.) Can we do any
better, say 2K poly(n) time, or more generally f(k) poly(n) time for some function f?
The theory of fixed parameter intractability studies such questions. There is a large set
of NP problems including INDSET that are complete in this respect, which means that
one of them has a f (k) poly(n) time algorithm iff all of them do. Needless to say, this
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notion of “completeness” is with respect to some special notion of reducibility; the
book [FG06] is a good resource on this topic.

Similarly, one can wonder if there is an extension of NP-completeness that butresses
the intuition that the true complexity of INDSET and many other NP-complete problems
is 2" rather than simply nonpolynomial. Impagliazzo, Paturi, and Zane [IPZ98] have
such a theory, including a notion of reducibility tailored to studying this issue.

WHAT HAVE WE LEARNED?

e The class NP consists of all the languages for which membership can be certified to
a polynomial-time algorithm. It contains many important problems not known to be
in P. We can also define NP using nondeterministic Turing machines.

e NP-complete problems are the hardest problems in NP, in the sense that they have
a polynomial-time algorithm if and only if P = NP. Many natural problems that
seemingly have nothing to do with Turing machines turn out to be NP-complete.
One such example is the language 3SAT of satisfiable Boolean formulae in 3CNF
form.

o IfP = NP, then for every search problem for which one can efficiently verify a given
solution, one can also efficiently find such a solution from scratch.

e The class coNP is the set of complements of NP-languages. We believe that coNP #
NP. This is a stronger assumption than P = NP.

CHAPTER NOTES AND HISTORY

Since the 1950s, Soviet scientists were aware of the undesirability of using exhaustive or
brute force search, (which they called perebor,) for combinatorial problems, and asked
the question of whether certain problems inherently require such search (see [Tra84]
for a history). In the West, the first published description of this issue is by Edmonds
[Edm65], in the paper quoted in the previous chapter. However, on both sides of the
iron curtain, it took some time to realize the right way to formulate the problem and
to arrive at the modern definition of the classes NP and P. Amazingly, in his 1956
letter to von Neumann we quoted earlier, Godel essentially asks the question of P vs.
NP, although there is no hint that he realized that one of the particular problems he
mentions is NP-complete. Unfortunately, von Neumann was very sick at the time, and
as far as we know, no further research was done by either on them on this problem, and
the letter was only discovered in the 1980s.

In 1971, Cook published his seminal paper defining the notion of NP-completeness
and showing that SAT is NP complete [Coo71]. Soon afterwards, Karp [Kar72] showed
that 21 important problems are in fact NP-complete, generating tremendous interest in
this notion. Meanwhile, in the USSR, Levin independently defined NP-completeness
(although he focused on search problems) and showed that a variant of SAT is NP-
complete. Levin’s paper [Lev73] was published in 1973, but he had been giving talks
on his results since 1971; also in those days there was essentially zero communication
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between eastern and western scientists. Trakktenbrot’s survey [Tra84] describes Levin’s
discovery and also gives an accurate translation of Levin’s paper. See Sipser’s sur-
vey [Sip92] for more on the history of P and NP and a full translation of Godel’s
remarkable letter.

The book by Garey and Johnson [GJ79] and the web site [CK00] contain many
more examples of NP complete problems. Some such problems have been studied well
before the invention of computers: The traveling salesperson problem has been studied
in the nineteenth century (see [LLKS85]). Also, a recently discovered letter by Gauss
to Schumacher shows that Gauss was thinking about methods to solve the famous
Euclidean Steiner Tree problem—today known to be NP-hard—in the early nineteenth
century. See also Wigderson’s survey [Wig06] for more on the relations between NP
and mathematics.

Aaronson [Aar(5] surveys various attempts to solve NP complete problems via
“nontraditional” computing devices.

Even if NP # P, this does not necessarily mean that all of the utopian applications
mentioned in Section 2.7.3 are automatically ruled out. It may be that, say, 3SAT is
hard to solve in the worst case on every input but actually very easy on the average, See
Chapter 18 for a more detailed study of average-case complexity. Also, Impagliazzo
[Imp95b] has an excellent survey on this topic.

An intriguing possibility is that it is simply impossible to resolve the P vs. NP
question using the accepted axioms of mathematics: This has turned out to be the
case with some other questions such as Cantor’s “Continuum Hypothesis.” Aaronson’s
survey [Aar03] explores this possibility.

Alon and Kilian (in personal communication) showed that in the definition of the
language Factoring in Example 2.3, the condition that the factor p is prime is necessary to
capture the factoring problem, since without this condition this language is NP-complete
(for reasons having nothing to do with the hardness of factoring integers).

EXERCISES

2.1. Prove that allowing the certificate to be of size at most p(|x|) (rather than equal to
p(]x])) in Definition 2.1 makes no difference. That is, show that for every polynomial-
time Turing machine M and polynomial p : N — N, the language

{x:3Jus.t. ul <p(x]) and M (x,u) = 1}

is in NP.

2.2. Prove that the following languages are in NP:
Two coloring: 2COL = {G : graph G has a coloring with two colors}, where a
coloring of G with ¢ colors is an assignment of a number in [c] to each vertex
such that no adjacent vertices get the same number.

Three coloring: 3COL = {G : graph G has a coloring with three colors}.

Connectivity: CONNECTED = {G : G is a connected graph}.
Which ones of them are in P?
H531
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2.3.

24.

2.5.

2.6.

2.7.
2.8.

2.9.

2.10.
2.11.

2.12.

NP and NP completeness

Let LINEQ denote the set of satisfiable rational linear equations. That is, LINEQ
consists of the set of all pairs (A,b) where A is an m x n rational matrix and b is an
m dimensional rational vector, such that Ax = b for some n-dimensional vector x.
Prove that LINEQ is in NP (the key is to prove that if there exists such a vector x,
then there exists an x whose coefficients can be represented using a number of bits
that is polynomial in the representation of A,b). (Note that LINEQ is actually in P:
Can you show this?)

H531

Show that the Linear Programming problem from Example 2.3 is in NP. (Again,
this problem is actually in P, though by a highly nontrivial algorithm [Kha79].)

H531

[Pra75] Let PRIMES = { .n, : nis prime}. Show that PRIMES € NP. You can use the
following fact: A number 7 is prime iff for every prime factor g of n — 1, there exists
anumbera € {2,...,n — 1} satisfying a1 =1 (mod n) but a=/4 # 1 (mod n).
H531

Prove the existence of a nondeterministic universal TM (analogously to the determin-

istic universal TM of Theorem 1.9). That is, prove that there exists a representation

scheme of NDTMs, and an NDTM NU such that for every string «, and input x,

NUx,a) = My (x).

(a) Prove that there exists a universal NDTM AU/ such that if M, halts on x within
T steps, then MU halts on x,« within CT log T steps (where C is a constant
depending only on the machine represented by «).

(b) Prove that there is such a universal NDTM that runs on these inputs for at most
Ct steps.

H532
Prove Parts 2 and 3 of Theorem 2.8.

Let HALT be the Halting language defined in Theorem 1.11. Show that HALT is
NP-hard. Is it NP-complete?

We have defined a relation <, among languages. We noted that it is reflexive (i.e.,

L <, L for all languages L) and transitive (ie., if L <, L' and L’ <, L" then
L’ <, L"). Show that it is not symmetric, namely, L. <, L' need notimply L’ <, L.

Suppose L1, L, € NP. Thenis L1 U L, in NP? What about L1 N L,?

Mathematics can be axiomatized using for example the Zermelo-Frankel system,
which has a finite description. Argue at a high level that the following language is
NP-complete. (You don’t need to know anything about ZF.)

{(go, 1) : math statement ¢ has a proof of size at most # in the ZF system}

The question of whether this language is in P is essentially the question asked by
Godel in the chapter’s initial quote.
H532

Show that for every time-constructible 7 : N — N, if L € NTIME(T (n)), we can
give a polynomial-time Karp reduction from L to 3SAT that transforms instances of
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2.13.

2.14.

2.15.

2.16.

2.17.

2.18.

2.19.

size n into 3CNF formulae of size O(T (n) log T (n)). Can you make this reduction
also run in O(T (n) poly(log T'(n)))?

Recall that a reduction f from an NP-language L to an NP-languages L’ is par-

simonious if the number of certificates of f is equal to the number of certificates

of f(x).

(a) Prove that the reduction from every NP-language L to SAT presented in the
proof of Lemma 2.11 can be made parsimonious.

H532

(b) Show a parsimonious reduction from SAT to 3SAT.

Cook [Coo071] used a somewhat different notion of reduction: A language L is
polynomial-time Cook reducible to a language L' if there is a polynomial time TM
M that, given an oracle for deciding L', can decide L. An oracle for L’ is a magical
extra tape given to M, such that whenever M writes a string on this tape and goes
into a special “invocation” state, then the string—in a single step!—gets overwritten
by 1 or 0 depending upon whether the string is or is not in L’; see Section 3.4 for a
more precise definition.

Show that the notion of cook reducibility is transitive and that 3SAT is Cook-
reducible to TAUTOLOGY.

In the CLIQUE problem, we are given an undirected graph G and an integer K and
have to decide whether there is a subset S of at least K vertices such that every two
distinct vertices u, v € S have an edge between them (such a subset is called a cligue
of G). In the VERTEX COVER problem, we are given an undirected graph G and an
integer K and have to decide whether there is a subset S of at most K vertices such
that for every edge ij of G, at least one of i or j is in S (such a subset is called a vertex
cover of G). Prove that both these problems are NP-complete.

H532

In the MAX CUT problem, we are given an undirected graph G and an integer K
and have to decide whether there is a subset of vertices S such that there are at least
K edges that have one endpoint in S and one endpoint in S. Prove that this problem
is NP-complete.

In the Exactly One 3SAT problem, we are given a 3CNF formula ¢ and need
to decide if there exists a satisfying assignment u for ¢ such that every clause of ¢
has exactly one TRUE literal. In the SUBSET SUM problem, we are given a list of
n numbers A1,...,A, and a number 7 and need to decide whether there exists a
subset S C [n] such that ), ¢ A; = T (the problem size is the sum of all the bit
representations of all numbers). Prove that both Exactly 0ne3SAT and SUBSET
SUM are NP-complete.

H532

Prove that the language HAMPATH of undirected graphs with Hamiltonian paths is
NP-complete. Prove that the language TSP described in Example 2.3 is NP-complete.
Prove that the language HAMCY CLE of undirected graphs that contain Hamiltonian
cycle (a simple cycle involving all the vertices) is NP-complete.

Let QUADEQ be the language of all satisfiable sets of quadratic equations over 0/1
variables (a quadratic equations over uq,...,u, has the form Zi,je[n] a;juii; = b)
where addition is modulo 2. Show that QUADEQ is NP-complete.

H532
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2.20.

2.21.

2.22.

2.23.
2.24.
2.25.
2.26.

2.27.

2.28.

2.29.

2.30.

2.31.

2.32.

NP and NP completeness

Let REALQUADEQ be the language of all satisfiable sets of quadratic equations over
real variables. Show that REALQUADEQ is NP-complete.

H532

Prove that 3COL (see Exercise 2.2) is NP-complete.

H532

In a typical auction of » items, the auctioneer will sell the ith item to the person that
gave it the highest bid. However, sometimes the items sold are related to one another
(e.g., think of lots of land that may be adjacent to one another) and so people may
be willing to pay a high price to get, say, the three items {2,5, 17}, but only if they
get all of them together. In this case, deciding what to sell to whom might not be
an easy task. The COMBINATORIAL AUCTION problem is to decide, given numbers
n,k, and a list of pairs {(S;,x;)}/*,; where S; is a subset of [r] and x; is an integer,
whether there exist disjoint sets S;,, . . ., S;, such that Zle Xi; > k. That is, if x; is the
amount a bidder is willing to pay for the set S;, then the problem is to decide if the
auctioneer can sell items and get a revenue of at least k, under the obvious condition
that he can’t sell the same item twice. Prove that COMBINATORIAL AUCTION is
NP-complete.

H532

Prove that P € NP N coNP.

Prove that Definitions 2.19 and 2.20 do indeed define the same class coNP.
Prove that if P = NP, then NP = coNP.

Show that NP = coNP iff 3SAT and TAUTOLOGY are polynomial-time reducible to
one another.

Give a definition of NEXP without using NDTMs, analogous to Definition 2.1 of the
class NP, and prove that the two definitions are equivalent.

We say that a language is NEXP-complete if it is in NEXP and every language in
NEXP is polynomial-time reducible to it. Describe a NEXP-complete language L.
Prove that if L € EXP then NEXP = EXP.

Suppose Li,L; € NP N coNP. Then show that L1 & L; is in NP N coNP, where
L1 @® Ly = {x: xisin exactly one of L1, L}.

(Berman’s Theorem 1978) A language is called unary if every string in it is of the
form 1 (the string of i ones) for some i > 0. Show that if there exists an NP-complete
unary language then P = NP. (See Exercise 6.9 for a strengthening of this result.)
H532

Define the language UNARY SUBSET SUM to be the variant of the SUBSET SUM
problem of Exercise 2.17 where all numbers are represented by the unary repre-
sentation (i.e., the number k is represented as 1%). Show that UNARY SUBSET SUM
isin P.

H532

Prove that if every unary NP-language is in P then EXP = NEXP. (A language L is
unary iff it is a subset of {1}*, see Exercise 2.30.)



Exercises 67

2.33.

2.34.

Let X, SAT denote the following decision problem: Given a quantified formula ¢ of
the form
¥ = Jee0,1)"Vyeo, 1y St 9(x,y) = 1

where ¢ is a CNF formula, decide whether v is true. That is, decide whether there
exists an x such that for every y, ¢(x,y) is true. Prove that if P = NP, then %,SAT
isin P.

Suppose that you are given a graph G and a number K and are told that either (i)
the smallest vertex cover (see Exercise 2.15) of G is of size at most K or (ii) it is
of size at least 3K. Show a polynomial-time algorithm that can distinguish between

these two cases. Can you do it with a smaller constant than 3? Since VERTEX COVER
is NP-hard, why does this algorithm not show that P = NP?



