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11.6 In practice 
 
 
In this section we look at practical applications of capillary pressure and related properties. 
 
Relation between capillary pressure and saturation revisited 
 
From the previous section you know a little about capillary pressures and relationships between capillary 
pressures and saturation of the wetting fluid. This last relation is very important, so we re-iterate it here. 
We will take water as the wetting fluid. 
 
At low water saturation the water will primarily live in the small pores (the small crooks and crannies of 
the porous rock). The radii of curvature will be small and therefore the capillary pressure will be high. A 
high capillary pressure means that we have to impose a large pressure gradient to move the water out. At 
very low saturations, the water may become immobile. This means that the wetting fluid is disconnected 
and can not transmit a pressure difference so we can not force the flow out.  
 
At high water saturation, the water fills the larger pores as well. The radii of curvature in the larger pores 
are larger, and therefore the capillary pressure is lower. These pores can be easily drained by imposing a 
pressure difference just a little higher than this capillary pressure.  
 
Is the relation between capillary pressure and saturation the same for all reservoir rocks? If not, what rock 
properties would it depend on? 
 
 
Measuring capillary pressure 
 
We mention one method that can be used to find the relation between saturation and capillary pressure. It is 
the method of mercury injection. A core sample is inserted in a mercury chamber. Then mercury is forced 
into the pores under pressure. Note that mercury normally is a nonwetting fluid. The volume of mercury 
injected at each pressure determines the non-wetting saturation from which the wetting saturation can be 
computed.  
 
What are the disadvantages of this method? 
 
 
 
Converting laboratory measurements to reservoir conditions 
 
 
If mercury injection is used to measure capillary pressure/saturation curves for a rock, we are measuring 
capillary pressures using a completely different fluid from what is found in the reservoir. Of course, the 
method will still tell us a lot about the rock, but we cannot use the capillary pressure data directly.   
 
Suppose that lab measurements are done using an air/mercury system, but in the reservoir we have 
air/water. In analogy with capillary tube we have 
 

 
r
cos2

p mama
cL

θσ
= . 

 
where the subscript L indicates the lab measurement. In the reservoir the same analogy would give for 
air/water 
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We get 
 

 cL
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In most cases the contact angles are unknown so they are usually ignored and we get 
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So we must know the surface tensions and the capillary pressure in the lab to find an approximation to the 
capillary pressure in the reservoir.  
 
 
 
 
 
 
 
 
 
 
Is ignoring the angles a big problem? Not really in most cases.  
 
As example, suppose we compare a mercury/air experiment with a water-air experiment. The data are 
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Note that the surface tension is measured in dyne (10-5 N) per cm of surface (check that this gives the 
correct units for capillary pressure in equations that we have derived in previous sections).  
 
Not ignoring the angles we would get a capillary pressure ratio of 5.253. If they are ignored then the ratio 
is 6.857. Not too bad. 
 
 
 
Averaging capillary –pressure data 
 
Capillary pressure data obtained are generally obtained by tests performed on small cores of reservoir rock. 
The cores are of course extremely small parts of the reservoir and may not be fantastic representations of 
the reservoir rock. We know that permeability and porosity influence saturation/capillary pressure findings. 
How can we relate the information obtained on the cores to the general reservoir? A popular correlation 
function is the Leverett J function, given by 
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The function depends on the rock type, but generally one function can be used for one reservoir.  
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A typical J-curve is sketched in figure 11-15. So, from this curve the capillary pressure can be determined 
if the saturation, permeability and porosity are known. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Height of saturation in the reservoir 
 
 
Let's look at another practical example. Suppose we have a nicely stratified reservoir: the water is in the 
bottom of the reservoir, oil on top of the water and gas on top of the oil. Of course in between the regions 
of full water, full oil and full gas saturation are (large) regions of mixed phases. This is illustrated in figure 
11-16. 
 
Here we assume that we can find a free water surface, a flat surface separating the 100% water area from 
the water/oil region at which the capillary pressure is 0. We will also assume that the water and oil phases 
are connected and that the system is in equilibrium. 
 
As we discussed in lecture 25, the free water surface in a water-wet reservoir will be below the oil-water 
contact. Refer to the slides of this lecture for an illustration. 
  

saturation Sw 

 

Fig 11-15   Typical Leverett-J curve 
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Because the capillary pressure at the free water surface is 0, the pressure at this surface in the oil phase and 
the water phase is the same (it is assumed the surface is flat). We can then use a capillary tube analogy to 
find a relation between height above the free water surface and capillary pressure (here we assume that the 
height does not extend above the gas-oil contact line). 
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We can also express the difference in capillary pressures at heights h2 and h1 above the free water surface 
as 
 

 h2 − h1 =
pc2 − pc1
ρw − ρo( )g

. 

 
 
Suppose that a laboratory test is done on a core sample with air/water. The water saturation is equal to 0.35. 
The capillary pressure measured in the lab is equal to 18 psi. Calculate the height above the free water 
surface of the 35% saturation plane in the reservoir if you know that 
 
 .ftcu/lb53,ftcu/lb68,dynes72,dynes24 owwgwo =ρ=ρ=σ=σ  
 
Watch your units! 
 
 
In the gas zone, we have three phases and things are a bit more complicated. If all three phases are 
connected then 
 
 ( ) ( ) ( )ogcwocwgc ppp += . 
 
However, we have to be careful. If the water phase becomes disconnected at a certain height, then the water 
saturation will be equal to the threshold saturation at all levels above this height. If the water becomes 

water 

water+oil 

gas+oil+water 

goc line 

woc line 
free water surface 

Fig 11-16   A  reservoir with a free water surface 
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disconnected, we introduce the free oil surface (at the goc line) and compute with respect to this level using 
oil and gas as the connected phases. 
 
In the second example we calculate water and oil saturation in the gas zone from capillary-pressure data. 
Suppose that the oil zone thickness is 70ft and that we are interested in the oil, gas and water saturations at 
a height of 120 ft. We have the following data 
 

ftcu/lb7,ftcu/lb53,ftcu/lb68,dynes50,dynes72,dynes25 gowogwgwo =ρ=ρ=ρ=σ=σ=σ . 
 
We know that the threshold saturation of water is 16% at heights of 70 ft or higher above the free water 
surface.  Ans.: So=2%, Sg=82% 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


