
 

 

NVIDIA’S FIRST CPU IS A WINNER 
Denver Uses Dynamic Translation to Outperform Mobile Rivals 

By Linley Gwennap  (August 18, 2014) 

................................................................................................................... 

August 2014 © The Linley Group  •  Microprocessor Report  

Nvidia’s first CPU design, code-named Denver, de-
livers ARMv8 compatibility and high performance using 
an unusual technique: dynamic instruction translation. As 
explained by CPU architect Darrell Boggs at this week’s 
Hot Chips conference, Denver can execute ARMv8 code in 
two ways: either natively at a peak rate of two instructions 
per cycle or by using what Boggs calls dynamic code opti-
mization to achieve a peak rate of seven micro-ops per 
cycle. Nvidia’s initial benchmark testing shows the 64-bit 
CPU outperforming all other announced ARM cores and 
even matching the performance of low-end versions of 
Intel’s Haswell CPU. 

The first product to use Denver is Tegra K1-64, which 
is designed for tablets, high-end smartphones, automotive 
in-dash systems, and similar applications. This chip is 
similar to Tegra K1-32 but replaces that chip’s four 2.3GHz 
Cortex-A15s with two Denver CPUs running at up to 
2.5GHz. The two chips are pin compatible and have roughly 
the same thermal envelope, enabling Tegra customers to 
drop in the K1-64 as soon as it’s ready. The chip is already 
sampling and is scheduled to enter production in 4Q14. 

To deliver high performance in a mobile power pro-
file, Nvidia moved much of the instruction-scheduling 
function into software using dynamic translation. This 
approach is similar to what Transmeta did more than a 
decade ago (see MPR 2/14/00, “Transmeta Breaks x86 
Low-Power Barrier”). Unlike that design, Denver includes 
some hardware-based instruction decoders; thus, it need 
only translate frequently used routines, reducing the 
translation overhead. 

Nvidia has based previous Tegra processors, includ-
ing the K1-32, on licensed ARM cores, making Denver its 
first attempt at internal CPU design. (Of course, the com-
pany has designed its own graphics processors for years.) 

It’s not bad for a first try: Tegra K1-64 outperforms all 
competing high-end mobile processors, particularly on 
single-threaded benchmarks. The K1-64 is the first high-
end ARMv8 mobile processor that is generally available to 
OEMs (unlike Apple’s in-house processor), giving Nvidia 
another edge over its 32-bit rivals. 

Dynamic Instruction Translation 
When a program begins executing on Denver, the instruc-
tions pass through the decoders and into the execution 
units, as in any other CPU. In addition to its normal du-
ties, the branch unit counts the number of times each rou-
tine (represented by a branch target address) is encoun-
tered. When this count passes a certain threshold, the CPU 
triggers a micro-interrupt that jumps to a firmware routine 
called the optimizer, as Figure 1 shows. 

Figure 1. Code translation in Nvidia’s Denver CPU. The op-
timizer converts ARMv8 instructions into native microcode, 
storing the result in a main-memory block called the optimi-
zation cache.  

Denver CPU

Hardware 
Decoder Dynamic 

Profile Info

Optimization Cache
(Main Memory)

Micro-Ops

ARM
Instructions

Execution
Units

Optimized
Microcode

Optimizer

Scheduler



  2 Nvidia’s First CPU Is a Winner 

 August 2014 
 

© The Linley Group  •  Microprocessor Report  

The optimizer analyzes the indicated ARM code and 
translates it into the CPU’s native microcode (micro-ops). 
Each ARM instruction converts to 1.8 micro-ops. ARM’s 
own CPUs also use microcode but generate about 1.1 or 
1.2 micro-ops per instruction; Denver’s micro-ops are 
simpler and more general purpose than in ARM’s designs. 
The Denver micro-ops have a variable length but average 
about 5.7 bytes. Taking into account Thumb encodings, 
the average ARM instruction contains 3.1 bytes and con-
verts to 10.3 bytes of micro-ops, increasing code size by 
3.3x. (These figures are based on SPECint2000 and will 
vary somewhat by application.) 

As in a VLIW design, micro-ops are grouped into 
bundles such that all micro-ops in a bundle can be exe-
cuted in the same cycle. To minimize code expansion, the 
optimizer suppresses any unused slots, resulting in varia-
ble-length bundles. Each bundle can contain up to seven 
micro-ops but is capped at 32 bytes. Because of this cap, 
even a maximum-size bundle typically contains five or six 
micro-ops. The average bundle size is three or four micro-
ops (18 to 24 bytes). 

Befitting its name, the optimizer does far more than 
simple translation. To maximize the use of slots in each 
bundle, it reorders micro-ops and renames registers to 
work around dependencies. Rather than simply optimizing 
a basic block, it unrolls loops and works past branches us-
ing information from the branch predictor to determine 
the most likely direction of each branch. It can even con-
vert subroutines to inline code. 

An optimized routine can encompass up to 1,000 
ARM instructions—a far larger window than any out-of-
order (OOO) scheduler implemented in hardware. The 
optimizer may stop sooner, however, if it runs out of re-
sources, such as rename registers or store-buffer entries. It 
must also stop if it encounters an instruction that changes 
the privilege level or performs other system functions (e.g., 
cache flush). 

The translated microcode is stored in a 128MB re-
served area of main memory that Nvidia calls the optimi-
zation cache. The instruction-fetch unit includes a transla-
tion table that converts the address of an ARM routine to 
the address of the corresponding microcode routine; each 
time it encounters the translated routine, the CPU auto-
matically fetches from the optimization cache instead of 

the original ARM code. As more routines are translated, 
the optimizer can link them together, allowing the CPU to 
branch directly from one microcode routine to another. 

The optimization cache is protected such that only 
microcode (optimized) routines can write to it, providing 
security against malicious or poorly written code that at-
tempts to overwrite the optimizer or optimized code se-
quences. For this reason, and to improve performance, the 
optimizer is preconverted to microcode and stored in the 
optimization cache. Unlike processors that perform 
instruction scheduling in hardware, this approach allows 
Nvidia to easily update the optimizer to improve perfor-
mance or fix bugs. 

The Optimizer in Action 
Figure 2 shows a profile of a typical program running on 
Denver. As the program starts, the CPU executes mainly 
ARM instructions (the yellow bars), but it quickly identi-
fies “hot” routines and begins translating them into micro-
code that is later directly executed (the green bars). After 
just 2% of the total execution time, the CPU is largely exe-
cuting microcode. Partway through the run, this particular 
program deploys a set of new routines, causing a brief 
surge in ARM instructions; again, however, these instruc-
tions are quickly translated into microcode. The CPU then 
executes nearly 100% microcode until it encounters the 
teardown code at the end of the program. 

The red bars show the overhead of the optimizer 
itself. Even during the few periods with extensive transla-
tion, the optimizer consumes fewer than 20% of the cycles; 
most of the time, it uses less than 10%, and it completely 
disappears for more than half the test. Over the course of 
this particular program, the optimization overhead is only 
3.2%. For highly repetitive programs, including some 
SPECfp2000 components, the optimization overhead for 
the entire program is nearly zero. On the other hand, com-
plex programs with many functions will have considerably 
more overhead. 

Even after a routine is translated, the CPU can again 
invoke the optimizer if the behavior of a branch changes 
over time. This situation can happen if conditions change 
during a program’s execution (for example, the scene in a 
game program changes from day to night). Specifically, 
when the branch predictor changes the prediction for a 

branch, it will invoke the op-
timizer; the optimizer deter-
mines which optimized rou-
tine contains the branch and 
generates new microcode for 
that routine. This type of re-
optimization may be respon-
sible for the small burst of 
optimizer activity about half-
way through the benchmark 
run in Figure 2. 

Figure 2. Program execution on the Denver CPU. When running the “crafty” component of 
the SPECint2000 benchmark, the CPU initially executes mostly ARM instructions but soon 
switches almost entirely to microcode. (Source: Nvidia)  

% of Benchmark Run (time) 

%
 E

xe
c 

Ty
pe

s

Optimized Microcode Execution ARM Decoded Execution Optimizer Execution



  Nvidia’s First CPU Is a Winner 3 

 August 2014 
 

© The Linley Group  •  Microprocessor Report  

Front End Handles Two Instruction Types 
The Denver microarchitecture combines a fairly simple 
front end with a wide set of execution units, as Figure 3 
shows. The instruction cache is 128KB, four times the 
usual size for Cortex-A15 and other popular ARM CPUs; 
the 3x code expansion of the micro-ops forced Nvidia to 
adopt this larger cache. The instruction TLB has 128 en-
tries and is four-way associative. Each cycle, the I-cache 
feeds 32 bytes into the fetch queue. This bandwidth 
matches the maximum bundle length.  

In ARM mode, the fetch queue feeds eight bytes per 
cycle into the ARM decoder, which decodes two ARM 
instructions into micro-ops. The decoder handles both 
ARMv8 instructions and legacy ARMv7 (Aarch32) apps. If 
possible, the decoder combines the micro-ops into a single 
bundle; if the two instructions have dependencies or re-
source conflicts, it creates two separate bundles. 

In native mode, the fetch unit extracts a single varia-
ble-length bundle from the fetch queue and feeds it into a 
microcode decoder. Although the micro-ops are stored in 
memory in an expanded form, some fields are still multi-
plexed to reduce code bloat. The microcode decoder de-
multiplexes these fields into a series of one-hot signals that 
indicate, for example, which function unit will execute 
each micro-op. This advance work speeds the scheduler’s 
operation. 

As noted above, a maximum-size bundle most often 
contains five or six micro-ops, which represent on average 
three ARM instructions. Thus, even assuming the opti-
mizer can create such bundles, Denver has difficulty sus-
taining more than five micro-ops per cycle or more than 
three ARM instructions per cycle. By comparison, the 
maximum sustainable execution rate in ARM mode is two 
ARM instructions per cycle. 

The Denver microarchitecture is a strictly in-
order design, eliminating the need for reorder buffers 
or similar hardware structures. All instruction bun-
dles, whether they come from the ARM decoder or 
the microcode decoder, are handled in the same way 
once they reach the scheduler. The scheduler merely 
checks the micro-ops to ensure that all operands are 
available; if any operand is delayed (owing to an 
unexpected cache miss, perhaps), execution stalls 
until the dependency is resolved. These stalls happen 
more often in ARM mode, because the optimizer 
attempts to arrange the microcode to avoid stalls. 

The CPU provides 64 integer registers and 64 
FP/Neon registers—twice the size of the archi-
tected register set. In ARM mode, the ARM reg-
isters use only the lower-numbered microcode 
registers. In native mode, however, the optimizer 
takes advantage of the wider register fields to ad-
dress the entire microcode register set, using the 
extra registers for renaming. This approach is 
similar to the hardware-based register renaming in 

most high-end CPU designs, but it eliminates the complex 
logic needed to assign and track the register mapping. 

Microcoded Execution Engine 
In number and type, Denver’s execution units are similar 
to Cortex-A15’s (see MPR 5/27/13, “How Cortex-A15 
Measures Up”). Denver has two integer units, only one of 
which contains a multiplier. Each of the two load/store 
units can also execute simple integer instructions, provid-
ing up to four integer-execution slots per cycle. For full 
ARMv8 compatibility, each of these units supports 64-bit 
operations. The FP/Neon units are a full 128 bits wide and 
can perform two double-precision FP operations or one 
128-bit SIMD operation per cycle. Given the CPU’s capac-
ity for up to four integer operations, two loads, two stores, 
and two FP/Neon operations on each cycle, the optimizer 
has great flexibility in bundling micro-operations. 

As with instruction execution, the CPU performs 
loads and stores in order. It includes a 64KB data cache. 
The data TLB contains 256 entries in eight ways; each en-
try maps a standard 4KB page, or two entries can be com-
bined to map a 64KB page. A 2MB level-two (L2) cache 
backs the primary caches, as Figure 3 shows, and responds 
in 18 cycles (load-to-use). All the caches have 64-byte lines. 
An L2 TLB, which Nvidia calls an accelerator cache, has 2K 
entries in eight ways; it contains address translations as 
well as partial results from table walks. 

The core includes a hardware prefetch unit that Boggs 
describes as “aggressive” in preloading the data cache but 
less aggressive in preloading the instruction cache. It also 
implements a “run-ahead” feature that continues to execute 
microcode speculatively after a data-cache miss; this exe-
cution can trigger additional cache misses that resolve in 

Figure 3. Denver CPU microarchitecture. This design combines a fairly 
simple front end with a wide set of execution units that includes two 
integer units, two floating-point units, two load/store units, and one 
branch unit.  

1281286464

2 instr7 µops

64 6464

Integer Registers
64 128

Scheduler

128KB Instruction Cache (4 way)

64KB Data Cache (4 way)

I-TLB

D-TLB

2MB
L2

Cache
(16

way)

Branch
Pred
Unit

FP + Neon Regs

FP/Neon
MAC

Fetch Queue
32 bytes

128

FP/Neon
Add

Integer
+Mult

Integer
ALU

Load/
Store

ARM
Decoder

ARM
Decoder

Load/
StoreBranch

7 µops

H/W
Pre-
fetch

µCode
Expander

L2 
TLB



  4 Nvidia’s First CPU Is a Winner 

 August 2014 
 

© The Linley Group  •  Microprocessor Report  

the shadow of the first miss. Once the data from the original 
miss returns, the results of this speculative execution are 
discarded and execution restarts with the bundle containing 
the original miss, but run-ahead can preload subsequent 
data into the cache, thus avoiding a string of time-wasting 
cache misses. These and other features help Denver out-
score Cortex-A15 by more than 2.6x on a memory-read test 
even when both use the same SoC framework (Tegra K1). 

Although the CPU spends most of its time executing 
translated code, it must still appear to software as a tradi-
tional ARM design. As with hardware OOO designs, inter-
rupts and exceptions pose a challenge. At the start of each 
translated routine, Denver checkpoints the architected state 
using internal shadow registers. The caches employ a trans-
actional memory model, which means that store data isn’t 
committed until the end of a “transaction”—in this case, the 
translated routine (see MPR 5/26/14, “Transactional Mem-
ory Accelerates”). Nvidia declined to specify the imple-
mentation method, but stores can be held in a buffer (a 
method Transmeta used) or provisionally loaded into the 
data cache while retaining the ability to invalidate those 
cache entries if necessary. 

At the end of each translated routine, the CPU com-
mits all pending stores. If an interrupt occurs while the 
CPU is executing translated code, however, the pending 
stores are aborted and the architected state (including the 
program counter) is rolled back to the previous checkpoint 
before transferring to the designated interrupt handler. If 
the interrupt handler chooses to restart execution, it does 
so at the beginning of the translated routine. 

If an exception occurs during translated code, it is not 
reported to the exception handler. Instead, the CPU rolls 
back to the previous checkpoint and aborts pending stores. 
It then re-executes the offending routine using the original 
ARM code. If the exception occurs again, the exception 
handler is invoked; because the ARM instructions execute 
in order in this mode, no cleanup is required. 

Skewing the Pipeline 
The Denver CPU uses a moderately deep pipeline with 15 
stages, compared with 18 stages for Cortex-A15. Owing to 
the similarity in pipeline length, it should be able to ap-
proach the A15’s maximum clock speed. In mobile sys-
tems, however, Cortex-A15’s speed is limited by its power 

(thermal limits), not its pipeline. Having only two cores 
instead of four in the same thermal envelope, Denver offers 
more thermal headroom, which helps Tegra K1-64 achieve 
slightly higher clock speeds than the K1-32. 

Nvidia chose to “skew” the pipeline, delaying the exe-
cute state until after the data cache is accessed, as Figure 4 
shows. This arrangement essentially eliminates the load-use 
penalty, allowing the optimizer to bundle a load operation, a 
dependent ALU operation, and a dependent store. In this 
situation, the load/store unit calculates the load address in 
stage EA2 and accesses the data cache in stages ED3 and 
EL4. The load data is bypassed directly to the ALU, which 
executes in stage EE5. The calculation result goes to the 
second load/store unit, which computes the store address in 
stage ES6 and writes the store data in EW7. 

This design gives the optimizer greater flexibility, 
allowing it to combine many dependent operations in the 
same bundle and thus increasing the number of instruc-
tions executed on each cycle. Delaying the execution stage, 
however, extends the time before a branch misprediction is 
discovered. Instead of potentially executing in stage EA2, a 
compare instruction executes in EE5. As Figure 4 shows, 
the misprediction penalty is 13 cycles, which is hefty but 
still shorter than Cortex-A15’s 15-cycle penalty. 

To avoid this misprediction penalty, Nvidia put con-
siderable work into improving branch-prediction accuracy. 
In his presentation, Boggs showed that compared with the 
A15, Denver reduces mispredictions by about 20% on 
SPECint2000, SPECfp2000, and Google Octane. For all three 
benchmarks, the misprediction rate is well below 1%. The 
company withheld details of Denver’s branch-prediction 
hardware but did indicate that it uses both direct and 
indirect predictors as well as the usual return address stack. 

Tegra K1 Includes Kepler GPU 
As it has for other recent processors, Nvidia provided art-
ful renditions instead of actual die photos. These rendi-
tions show each Denver CPU occupying the same die area 
as two A15 cores, and Boggs confirmed that this propor-
tion is roughly accurate. By eliminating one instruction de-
coder and much of the OOO complexity, Denver should in 
theory be smaller than Cortex-A15, but several factors tip 
the scales in the other direction. 

The 128KB instruction cache, which accommodates 
the wide micro-ops, is four times larger 
than the A15’s and consumes considerable 
die area. The dual 128-bit Neon units are 
twice as large as the A15’s. Don’t forget that 
Cortex-A15 is a 32-bit ARMv7 design, 
meaning Denver doubles all the integer data 
paths; this change alone adds at least 20% to 
the die area. Denver’s code translation also 
requires some incremental logic, including 
additional tables in the branch unit and 
hardware checking for run-time problems 

Figure 4. Denver CPU pipeline. The ARMv8 CPU uses a 15-stage pipeline that 
is similar in length to Cortex-A15’s.  

ITLB I$ Read Way Sel Decode Fetch Q Pick
IP1 IC2 IW3 IN4 IN5 SB1 SB2

Reg Rd Ld Addr D$ Read Bypass Execute St Addr Reg Wr
EB0 EA2 ED3 EL4 EE5 ES6 EW7

13-cycle mispredict penalty 

Bypass
EB1

Sched



  Nvidia’s First CPU Is a Winner 5 

 August 2014 
 

© The Linley Group  •  Microprocessor Report  

that the optimizer doesn’t anticipate. Boggs 
also hinted at additional features to be dis-
closed later. 

Nvidia withheld specific power data, 
but the two-for-one exchange implies that 
each Denver core uses about twice the 
power of Cortex-A15. Power is roughly 
proportional to transistor count, so this 
ratio is consistent with Denver’s larger die 
area. Tegra K1-32 (and previous Tegra 
processors) includes a “companion core” 
that is optimized for low power on light 
workloads; the K1-64 omits this core and 
will simply operate at lower speed and 
voltage when the workload is light. Qual-
comm uses the same approach with its 
Krait CPUs. 

In Denver, Nvidia added a new CC4 
power state that pulls the CPU’s voltage below the min-
imum operating level but above the minimum voltage for 
SRAM state retention. The CPU can enter and exit CC4 in 
only 150 microseconds (depending on the slew rate of the 
voltage rail), allowing it to use this power-saving mode 
more frequently. Traditional power gating, in contrast, 
requires flushing and reloading the caches and registers, so 
it should be used only when the CPU will be idle for tens of 
milliseconds at a time. 

In most other ways, Tegra K1-64 is identical to the 
K1-32 (see MPR 1/13/14, “Tegra K1 Adds PC Graphics to 
Mobile”). Both chips include a Kepler GPU with 192 
shaders and OpenGL 4.4 support. In the Xiaomi MiPad, 
the K1-32 delivers 27fps on Kishonti’s Manhattan Off-
screen test, outscoring Qualcomm’s new Snapdragon 805 
and Apple’s A7 (iPhone 5s) processor, as Table 1 shows. At 
4K (UltraHD) resolution, Tegra K1 matches the compe-
tition in encoding and decoding video. Using its Chimera 
ISP, the chip provides leading-edge video and image 
processing performance. 

Industry-Leading CPU Performance 
In his presentation, Boggs showed a number of 
benchmarks that Nvidia ran on both Tegra K1 
versions. Denver’s best result came on the popular 
Android benchmark Antutu 4, where the new 
CPU doubled Cortex-A15’s performance in the 
K1-32. This result allows the company to say the 
dual-Denver configuration delivers the same per-
formance as the quad-A15 design. 

On other benchmarks, however, the K1-64 
falls a bit short of the K1-32. On Geekbench 3, a 
popular cross-platform benchmark, the new CPU 
delivers 1.6x better performance than Cortex-
A15—an impressive result but well short of the 2x 
needed to make up for the missing cores. Denver 
does slightly worse on SPECint2000 at 1.4x, but 

with its double-wide FPUs, it outscores its predecessor by 
1.75x on SPECfp2000, as Figure 5 shows. Reviewers of new 
phones and tablets don’t use the SPEC benchmarks, 
however, although some OEMs favor SPECint2000 as a 
robust metric of general performance. Taking an average 
of the five tests shown, Denver outperforms Cortex-A15 by 
1.62x, or 1.5x on a clock-for-clock basis. 

Apple’s dual-core A7 scores lower on multithreaded 
benchmarks, but its Cyclone CPU beats Cortex-A15 on 
many single-threaded tests. Tegra K1-64’s big advantage is 
on these single-threaded tests, where the powerful Denver 
CPU will outperform Apple’s Cyclone and stomp all other 
ARM cores, as Table 1 shows. 

Cheekily, Nvidia even compared Denver’s perfor-
mance against that of Haswell, Intel’s newest PC CPU. The 
chart shows the 2.5GHz Denver running neck-and-neck 
with a 1.4GHz Celeron processor that disables Haswell’s 
multithreaded capability. Thus, Haswell still appears to have 
a 1.8x advantage in per-clock performance for single-

 
Snapdragon 

805 
Apple  

A7 
Tegra  
K1-32 

Tegra  
K1-64 

Snapdragon 
810 

CPU ISA ARMv7 ARMv8 ARMv7 ARMv8 ARMv8 

CPU Type 4x Krait 400 2x Cyclone 4x A15 2x Denver 
4x A57 +  
4x A53 

CPU Speed 2.5GHz 1.4GHz 2.3GHz 2.5GHz 2.2GHz‡ 
CPU Perf*‡ 3.5 ST / 11.9 5.0 ST / 9.6 3.9 ST / 13.3 6.3 ST / 11.9 4.4 ST / 17.9 
GPU Type Adreno 420 SGX5 MP4 Kepler-192 Kepler-192 Adreno 430 
GPU Perf†§ 19fps 13fps 27fps 27fps 25fps‡ 
Video Decode 4K 1080p 4K 4K 4K 
ISP 1.0GP/s Not disclosed 1.2GP/s 1.2GP/s 1.2GP/s 
IC Process 28nm HPM 28nm HPM 28nm HPM 28nm HPM 20nm HKMG 
First Devices 2Q14 3Q13 2Q14 4Q14 (est) 1H15 (est) 

Table 1. Comparison of Tegra K1 products and competitors. The two Tegra K1 
versions are very similar except for their CPUs. Both offer better performance 
than the fastest Apple and Qualcomm processors. ST=single-thread. *Relative to 
1.0GHz Cortex-A9; †Manhattan Offscreen 1080p. (Source: vendors, except 
‡The Linley Group estimate and §www.gfxbench.com) 

Figure 5. Denver CPU single-core performance. This chart compares a 
2.5GHz Denver against a 2.3GHz Cortex-A15 (Tegra K1-32), a 1.4GHz 
Haswell, and a 1.3GHz Apple A7 processor. (Data source: Nvidia)  

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

SPECint2k SPECfp2k Antutu 4 Geekbench3 Octane v2.0

K1-32 iPhone
Haswell Denver



  6 Nvidia’s First CPU Is a Winner 

 August 2014 
 

© The Linley Group  •  Microprocessor Report  

threaded code and a greater advantage with multithreading 
enabled. But to be fair, the dual-core Celeron chip is rated 
at 15W TDP and carries a list price of $107; Tegra K1-64 
should come in at much less than half of those values. 

The Snapdragon 810 and other processors with four 
Cortex-A57 CPUs could exceed Tegra K1-64’s total per-
formance, as Table 1 shows. The 810 will use 20nm tech-
nology to fit these four 64-bit cores into the same power 
envelope as the dual-core Denver. Even so, the single-
thread performance of the A57 will fall well short of Den-
ver’s. We expect the Snapdragon 810, Qualcomm’s first 
high-end 64-bit processor, to appear in smartphones and 
tablets in 2Q15. 

Implications of Dynamic Translation 
Dynamic instruction translation has a long history, but it 
has never seen wide deployment. The technique traces 
back to research at Bell Labs and IBM in the early 1980s. 
Some VLIW companies tried it to solve the fundamental 
problem that multiple VLIW-processor generations cannot 
execute the same compiled code. Transmeta’s products 
translated x86 instructions into VLIW code, in part to 
avoid Intel patents on decoding x86 instructions in hard-
ware. The technology is similar to just-in-time (JIT) com-
pilation, which is used for Java and other languages, but 
dynamic translation compiles from assembly code rather 
than a high-level language. 

Dynamic translation creates some interesting oppor-
tunities beyond what standard CPUs can achieve. Although 
Nvidia declined to reveal any unusual capabilities of the 
execution units, the native microarchitecture could have 
features that are absent from the standard ARMv8 architec-
ture, such as fused operations or new addressing modes. The 
optimizer could easily create these combinations after 
analyzing the original code and grouping certain operations. 
This approach could put the “plus” in Nvidia’s claimed 7+ 
instructions per cycle. 

Another possibility is that Nvidia could create a ver-
sion of the Java JVM to translate from Dalvik format 

directly to microcode. This approach would reduce the 
overhead of translating to ARM and then retranslating to 
microcode. Furthermore, the Dalvik code has more seman-
tic information than binary ARM code, enabling greater 
optimization. Because of Denver’s security mechanisms, 
this JVM would have to reside in microcode format in the 
optimization cache, reducing space for optimized routines. 
Nvidia has not developed a direct-translation JVM, but it 
could in the future. 

The company could also provide tools for software 
developers to incorporate Denver microcode in their apps 
or middleware (e.g., web browser). This approach would 
improve performance by reducing translation overhead, 
although the 3x code expansion would require judicious 
usage. Perhaps more significantly, it could allow the crea-
tion and use of particularly complex instructions that can’t 
be synthesized from ARM code, such as an FFT. After an-
nouncing Tegra 3, Nvidia created the Tegra Zone to pro-
mote apps optimized for its architecture; it could apply the 
same approach to distributing microcoded apps. To do so, 
however, the company would have to expose its microcode 
format externally and deal with the problem of the format 
changing in future Tegra products. 

Translation can be applied to multiple instruction 
sets. Nvidia has been working on its first CPU for a long 
time (Boggs joined the company in 2006, after serving as 
one of the Pentium 4 architects). At one time, the project 
was rumored to be an x86 CPU, and later a dual-mode 
design. Denver could easily execute x86 code just by run-
ning a different version of the optimizer; because it lacks 
x86 decoders, however, it would have to translate every 
routine before executing it, much as the Transmeta design 
did; this situation would reduce performance. If Nvidia 
added x86 compatibility to Denver, it could build chips for 
Windows 8 tablets or laptop PCs, or even attempt to 
displace Intel from supercomputers. 

Extending the Tegra Roadmap 
For now, Nvidia seems focused on Android tablets and 
other traditional Tegra markets where visual computing is 
valued. To follow Tegra K1-64, it is already developing a 
new processor code-named Erista, as Figure 6 shows. The 
company has released little information on Erista except 
that it will ship in 2015 and that it will upgrade the GPU to 
the Maxwell architecture that Nvidia is already shipping 
into PCs. Regarding performance, the company said only 
that Erista will add 70% to Tegra K1’s Gflops/W rating; 
this metric likely includes Gflops generated from the GPU 
as well as the CPU. 

To minimize Nvidia’s investment, we expect Erista 
will use the same 28nm Denver CPUs but add the new 
Maxwell GPU, combined with some minor improvements 
in the SoC framework. This combination would provide a 
big bump in graphics performance, helping Nvidia stay 
ahead of Qualcomm’s next-generation Adreno 430 (see 

Figure 6. Nvidia Tegra roadmap. The company’s public 
roadmap stops at Erista, but we have added a 2016 release 
date for the previously disclosed Parker. (Source: Nvidia, ex-
cept red text per The Linley Group estimates)  

Tegra
K1-32

Tegra
K1-64

Erista

Parker

2014 2015 2016

C
PU

+G
PU

 P
er

fo
rm

an
ce

4xA15 2xDenver

Kepler-192 GPU
28nm HPM

2xDenver
Maxwell GPU
28nm HPM

2xDenver
Maxwell GPU
16nm FinFET



  Nvidia’s First CPU Is a Winner 7 

 August 2014 
 

© The Linley Group  •  Microprocessor Report  

MCR 4/14/14, “Qualcomm Tips Cortex-A57 Plans”). It 
would, however, do little to boost CPU performance, ex-
cept for potential gains from improving the optimizer 
firmware. Still, this simple upgrade should be deliverable 
within a year. It would follow the same pattern as Tegra 
K1-32 (Logan), which carried forward the same CPU cores 
as Tegra 4 while upgrading the GPU. 

Nvidia previously disclosed a processor code-named 
Parker with Denver CPUs and a Maxwell GPU in a 16nm 
FinFET process. Parker has disappeared from Nvidia’s pub-
lic roadmap, but we believe the company is still working on 
this project. Delays in TSMC’s 16nm process have pushed its 
production into 2016, necessitating Erista’s addition to the 
plan. Nvidia may also need more time to port Denver to the 
new process node. The 16nm CPU design could include 
some minor tweaks to the microarchitecture based on field 
testing of the initial design. The process shrink should also 
boost CPU clock speed at the same power level. Alterna-
tively, Parker could implement four Denver cores operating 
at a lower clock speed; a quad-core design would boost 
benchmark scores but increase the die cost. 

Using the same approach as with Erista and Logan, 
Nvidia could release in 2017 a second 16nm processor us-
ing the same CPU cores as Parker but upgrading the GPU 
to the recently disclosed Pascal design. Pascal is scheduled 
to ship in PCs in 2016, so it could be ready for a mobile 
processor the following year. 

Towering Over Its Rivals 
Despite Boggs’s assertion that dynamic instruction trans-
lation is “the architecture of the future,” the jury is still out 
on this question. Dynamic translation didn’t cause Trans-
meta’s failure, but it wasn’t much help, either. Transmeta’s 
processors scored well on benchmarks but underper-
formed on Windows code and PC applications, which have 
many difficult-to-predict branches and fewer frequently 
repeated routines. To address this problem, the Denver 
CPU implements several features, including hardware 
instruction decoders and a hardware prefetch unit, that the 
Transmeta design lacked. Nvidia says it has tested Denver 
on a broad range of mobile applications, including web 
browsing and intense gaming, and found fairly consistent 
performance. 

Tegra K1-64 won’t be the first 64-bit ARM processor 
to reach production; Apple’s A7 has been shipping for 
months, and AppliedMicro’s X-Gene recently entered 

production. The first wave of Cortex-A53 products will 
probably beat the K1-64 to market as well. But Nvidia will 
have the first merchant ARMv8 processor for high-end 
mobile devices. That may sound like a lot of weasel words, 
but it means Tegra K1-64 will be the only 64-bit option 
available to makers of tablets and high-end smartphones. 
This exclusivity will last until Snapdragon 810 launches 
next spring. 

While other processor vendors considered whether to 
use ARM’s Big or Little cores, Nvidia took a different direc-
tion, developing a Kong-size core that towers over even Big 
cores in single-thread performance. Denver’s performance 
per watt is no better than that of its rivals, allowing them to 
achieve similar chip-level throughput by piling more cores. 
But most real apps (as opposed to benchmarks) heavily 
load only one or two cores, so the K1-64 should deliver a 
far better and more consistent user experience than any 
other mobile processor. Apple has taken a similar ap-
proach with its dual-core iPhone 5s processor, but it uses a 
much lower clock speed to extend battery life and thus lags 
the K1-64 in performance. 

Nvidia targets a higher power level than Apple and 
Qualcomm. Only two smartphone models use Tegra 4, and 
none use Tegra K1; the latter chip appears mainly in tab-
lets, which have larger batteries and tolerate more heat 
than smartphones. If a phone maker wanted to use Tegra 
K1, it would probably have to underclock the processor 
significantly, diluting the performance advantage. But in 
tablets, Chromebooks, and other larger systems, Tegra K1 
has a big advantage over rivals that are designing their 
CPUs for smartphones. The K1-64 extends that lead by 
delivering a big jump in single-thread performance and full 
64-bit support about a quarter earlier than its primary 
competitors. These advantages should help Nvidia reverse 
its declining tablet share, possibly starting with a rumored 
win in the next Google Nexus tablet. ♦ 

 
 

Price and Availability 

Tegra K1-64 is currently sampling and is scheduled to 
enter production before the end of this year. The com-
pany did not disclose pricing; we expect the K1-64 to sell 
for about $25 in high volume. For more information, see 
http://blogs.nvidia.com/blog/2014/08/11/tegra-k1-
denver-64-bit-for-android. 

To subscribe to Microprocessor Report, access www.linleygroup.com/mpr or phone us at 408-270-3772. 


