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1 Prelude and Intuition

Informally, a statistic T is sufficient for a parameter θ if, knowing T (X), we can throw away the data
X without compromising our ability to infer θ. In this sense, sufficient statistics are like a form of lossless
compression for datasets. Since modern computers are fast and have lots of memory, this sort of compression
is less necessary than it once was, but often still useful.

A simple example of a sufficient statistic is the sample mean for estimating the mean of a Gaussian: once we
compute the sample mean, nothing else in the data gives us any additional information about the underlying
parameter.

For i.i.d. samples, the order statistics are sufficient: given data X = (X1, X2, . . . , Xn), the order statistics(
X(1), X(2), . . . , X(n)

)
are defined such that the first order statistic X(1) is equal to the smallest of all the

Xi’s, the second order statistic X(2) is the second-smallest, and so on. Since order statistics throw away the
original ordering of the data, they are lossy in a sense, but for i.i.d. samples the original order is unimportant
and so the order statistics are sufficient. Depending on the distribution being sampled from, this might be
the best we can do, or we might be able to find another set of statistics that compress the data better. The
existence of a finite-dimensional set of sufficient statistics implies (subject to some regularity conditions)
that we are in the exponential family.

2 Definitions

Definition 1 (Frequentist sufficiency1). Let X be an rv with distribution from a family P = {Pθ : θ ∈ Ω}.
Then T (X) is a sufficient statistic for P if, for every t and θ, the conditional distribution Pθ(X|T = t) does
not depend on θ.

If we’re willing to allow a distribution on θ, we can also give a Bayesian definition:

Definition 2 (Bayesian sufficiency). A statistic T is sufficient if X and θ are conditionally independent
given T (X) = t, i.e., if

P (x, θ|t) = P (x|t)P (θ|t).

Remark 3. This definition implies the frequentist definition. To see this, divide both sides by P (θ|t), yielding

P (x|t, θ) = P (x|t).

The left side is just Pθ(x|T = t), written with Bayesian notation (conditioning on θ instead of indexing),
and the right side shows that this quantity does not depend on θ, satisfying the frequentist definition.

1Definition 3.2 from keener’s book.

1



2 Lecture 3: Sufficient Statistics

Example 4. (Exponential families) Earlier we defined exponential family distributions in terms of a
quantity T (x), which we called a sufficient statistic. Now we’ll show that this quantity actually meets the
definition of a sufficient statistic.

Suppose Pθ(X) is in the exponential family, i.e., it has a density

pθ(x) = h(x) exp
(
η(θ)TT (x)−B(θ)

)
.

We want to show that Pθ(X|T = t) does not depend on θ. To do this, we write the conditional density in
terms of the joint density, then cancel terms:

pθ(X|T = t) =
pθ(X,T = t)

p(T = t)
(1)

=
h(x) exp

(
η(θ)T t−B(θ)

)∫
T (x)=t

h(x) exp (η(θ)TT (x)−B(θ))µ(dx)
(2)

=
h(x) exp

(
η(θ)T t−B(θ)

)
exp (η(θ)T t−B(θ))

∫
T (x)=t

h(x)µ(dx)
(3)

=
h(x)∫

T (x)=t
h(x)µ(dx)

(4)

and finally note that the quantity at the end does not depend on θ, satisfying the definition of sufficiency.

The careful reader will be uncomfortable with the joint density pθ(X,T = t), since T is actually a deter-
ministic function of X, so this density is only supported on a measure-zero subset of the joint space. A
fully rigorous proof would require more careful treatment of conditional probabilities; for an example, see
the proof of the factorization theorem 3.6 in section 6.4 keener’s book.

2.1 Intuition: “fake data”

One way to motivate the frequentist definition (definition 1) is to show that knowledge of the sufficient

statistic T allows us to construct a “fake dataset” X̃ having the same distribution as the true dataset X.

Let X and Y be independent r.v.s with density

fθ(x) =

{
θe−θx x ≥ 0
0 otherwise

Also consider an additional r.v., U ∼ Uniform(0, 1), independent of X and Y . Now let

T = X + Y,

X̃ = UT,

Ỹ = (1− U)T.

Here X̃ and Ỹ will consitute our “fake dataset”; note that X̃ + Ỹ = T .

To derive the joint density on X̃ and Ỹ , we first need the density of T , which we can get by differentiating
the cumulative distribution function (cdf). To find the cdf, P (T ≤ t), we use a trick: first write down the
conditional cdf P (T ≤ t|Y = y), then take the expectation over Y using the tower rule to get an unconditional
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cdf. Let’s begin with the conditional cdf:

P (T ≤ t|Y = y) = P (X + Y ≤ t|Y = y)

= E [1X+Y≤t|Y = y] (rewriting the probability as expectation of an indicator),

=

∫
1(x+y≤t)P (dx)

= FX(t− y).

Now we’ll use this to derive the unconditional cdf:

FT (t) = P (T ≤ t)
= E [P (T ≤ t|Y )]

= E [FX(t− Y )]

and we substitute FX(t− Y ) = 1− e−θ(t−Y ), obtained by integrating the density, to yield

= E
[
1− e−θ(t−Y )

]
=

∫ t

0

(
1− e−θ(t−y)

)
θe−θydy

= 1− e−θt − tθe−θt.

Finally, we differentiate this cdf to obtain the density for T ,

pT (t) = F ′T (t) = tθ2e−θt.

Since T and U are independent, their joint density is just

pθ(t, u) =

{
tθ2e−θt t ≥ 0, 0 ≤ u ≤ 1
0 otherwise

.

Using this, we can finally write the joint measure on X̃ and Ỹ :

P

((
X̃

Ỹ

)
∈ B

)
=

∫∫
1B

(
tu

t(1− u)

)
pθ (t, u) dudt.

Substituting x = ut, du = dx/t, and using Fubini’s theorem to swap the integrals, we get

P

((
X̃

Ỹ

)
∈ B

)
=

∫∫
1B

(
x

t− x

)
t−1pθ

(
t,
x

t

)
dtdx

Substituting y = t− x,

P

((
X̃

Ỹ

)
∈ B

)
=

∫∫
1B

(
x
y

)
(x+ y)−1pθ

(
x+ y,

x

x+ y

)
dydx

from which we conclude that X̃ and Ỹ have joint density

pθ

(
x+ y, x

x+y

)
x+ y

=

{
θ2e−θ(x+y) x ≥ 0, y ≥ 0
0 otherwise

.
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Note this is the same joint density as for X and Y . Since our fake data have the same distribution as the
real data, they must give us the same information about the parameter θ. But we constructed the fake
data using only T and U , and U is clearly irrelevant. This suggests that all relevant information about θ is
contained in T .

To tie this back to the definition of sufficiency, consider

Pθ

((
X
Y

)
∈ B|T = t

)
= Pθ

((
X̃

Ỹ

)
∈ B|T = t

)
(5)

= P

((
Ut

(1− U)t

)
∈ B

)
. (6)

Since the last line has no dependence on θ, T is a sufficient statistic.

Theorem 5. Suppose that X ∼ P = {Pθ : θ ∈ Ω} and that T is sufficient for the family P. Then for any
estimatior δ(X) of g(θ), there exists a (possibly randomized) estimator based on T that has the same risk
function as δ(X).

Proof. The estimator δ(X̃), with X̃ constructed as “fake data” from T , has the same risk as δ(X) because

X and X̃ have the same distribution.

3 Factorization

We can give a different definition of sufficiency that’s often more useful in practice. Let P = {Pθ : θ ∈ Ω} be
a family of distributions dominated by some measure µ. That is, for all θ, Pθ � µ, so by Radon-Nikodym
we can assume the existence of densities pθ.

Theorem 6. (Factorization) A statistic T is sufficient if there exists gθ ≥ 0 and h ≥ 0 such that

pθ(x) = gθ (T (x))h(x)

almost everywhere. (we allow exceptions on set of measure zero wrt µ, since such discrepancies won’t affect
the values of integrals over these densities).

Note that gθ, the factor involving θ, depends only on the statistic T , not the full dataset x.

Proof. See Theorem 3.6 in keener’s book.

Example 7. For distributions in the exponential family,

pθ(x) = h(x) exp
(
η(θ)TT (x)−B(θ)

)
,

the factorization is straightforward: let

gθ(x) = exp
(
η(θ)TT (x)−B(θ)

)
and

h(x) = h(x).
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Example 8. Let Xi ∼ Uniform(θ, θ + 1) be iid random variables, with density fθ(xi) = 1(θ,θ+1)(xi). The
joint density is given by

pθ(x) =

n∏
i=1

1(θ,θ+1)(xi).

Using some cleverness we can rewrite this as

pθ(x) = 1(θ,∞)

(
min
i
xi

)
1(−∞,θ+1)

(
max
i
xi

)
;

it’s easy to check that this is equivalent. By the factorization theorem, using the trivial h(x) = 1, this implies
that

T =
(

min
i
xi,max

i
xi

)
is a sufficient statistic for θ.

Example 9. Let Xi be independent random variables with cdf

P (Xi ≤ x) = xtiθ,

for x ∈ (0, 1) and a sequence of known constants ti. Differentiating the cdf gives a density

fθ(xi) = tiθx
tiθ/x,

which implies a joint density

pθ(x) = θn

(
n∏
i=1

ti
x

)(
n∏
i=1

xtii

)θ
.

Now the factorization theorem allows us to read off the sufficient statistic

T (x) =

n∏
i=1

xtii .

Since any one-to-one transformation of a sufficient statistic is also sufficient, we could equivalently choose

T (x) =

n∑
i=1

ti log xi,

which might be nicer to work with.


