UC Berkeley Department of Statistics

STAT 210A: Introduction to Mathematical Statistics

Problem Set 2

Fall 2014

Problem 2.1

Suppose that (X_i, Y_i) , i = 1, ..., n are sampled i.i.d. from the two-dimensional normal distribution

$$\begin{bmatrix} X & Y \end{bmatrix} \sim N \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & \theta \\ \theta & 1 \end{bmatrix} \end{pmatrix}.$$

with $\theta \in \Omega = (-1, 1)$.

- (a) Find a two-dimensional minimal sufficient statistic.
- (b) Prove that the minimal sufficient statistic found in (a) is not complete.
- (c) Prove that $Z_1 = \sum_{i=1}^n X_i^2$ and $Z_2 = \sum_{i=1}^n Y_i^2$ are both ancillary, but that (Z_1, Z_2) is not ancillary.

Problem 2.2

Let X_1, \ldots, X_n be i.i.d. from a uniform distribution on $(-\theta, \theta)$, where $\theta > 0$ is an unknown parameter.

- (a) Find a minimal sufficient statistic T.
- (b) Let $\bar{X} = \frac{X_1 + \dots + X_n}{n}$ and define

$$V = \frac{\bar{X}}{X_{(n)} - X_{(1)}},$$

where $X_{(n)} = \max_i \{X_i\}$ and $X_{(1)} = \min_i \{X_i\}$. Show that T and V are independent.

Problem 2.3

Consider the family of variates (X_1, X_2, \dots, X_n) with $X_i \sim \text{Uni}[\theta - \frac{1}{2}, \theta + \frac{1}{2}]$.

- (a) Show that $T = (X_{(1)}, X_{(n)})$ is sufficient.
- (b) Suppose that we wish to estimate θ under the quadratic loss $L(\theta, a) = (\theta a)^2$. The sample mean \bar{X} might seem to be one reasonable estimate of θ , but turns out to be inadmissible. Indeed, show that the estimator

$$\delta(X_1,\ldots,X_n) := \mathbb{E}\left[\bar{X} \mid \min_i\{X_i\}, \max_i\{X_i\}\right]$$

has a strictly better MSE than the MSE of \bar{X} , and moreover that $\delta(X_1, \ldots, X_n) = \frac{\min_i \{X_i\} + \max_i \{X_i\}}{2}$.

Problem 2.4

Suppose that X_1, \ldots, X_n are an i.i.d. sample from a *location-scale family* specified by the distribution function F((x-a)/b). (Here F is a known cumulative distribution function; the real numbers a and b are the location and scale parameters respectively.)

- (a) If b is known, show that the differences $(X_1 X_i)/b$ for i = 2, ..., n are ancillary.
- (b) If a is known, show that the ratios $(X_1 a)/(X_i a)$ for i = 2, ..., n are ancillary.
- (c) If neither a nor b are known, show that the ratios $(X_1 X_i)/(X_2 X_i)$ for i = 3, ..., n are ancillary.

Problem 2.5

Let X_1, \ldots, X_n be i.i.d. Poisson random variables with mean λ , and suppose that we wish to estimate $g(\lambda) = \exp(-\lambda) = \mathbb{P}_{\lambda}[X=0]$.

- (a) Show that $S_1 = \mathbb{I}[X_1 = 0]$ and $S_2 = \frac{1}{n} \sum_{i=1}^n \mathbb{I}[X_i = 0]$ are both unbiased for estimating $g(\lambda)$.
- (b) Show that $T = \sum_{i=1}^{n} X_i$ is sufficient.
- (c) Compute the Rao-Blackwellized estimators $S_i^* = \mathbb{E}[S_i \mid T]$ for i = 1, 2. What does your answer have to do with completeness?

Problem 2.6

Let X be a single observation from a Poisson distribution with mean λ . Determine the UMVU estimator for

$$e^{-2\lambda} = \left[P_{\lambda}(X=0) \right]^2.$$