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1 Some basic probability comments

Here we look at the idea of a conditional probability from a more rigorous point of view and start by
establishing some basic probability results first.

1.1 Probability space, random variables

Let us assume the probability space (Ω,F ,P) where Ω is a sample space with possible realizations ω, P
a probability measure and F the σ-algebra containing event sets which are subsets of Ω. The probability
measure assigns positive scalars to sets in F . A random variable is a (measurable) function from the sample
space to another space E (with E = R or E = Rn, else called random element), i.e. X : Ω→ E. For example
in the case E = R, the inverse image of x ∈ R is {ω : X(ω) = x}. So by the random variable you induce a
probability distribution µ defined on the Borel σ-algebra B(R) and is defined by the probability measure P
as µ(A) = P(X−1(A)). Note: The randomness of the random variable comes from the domain of X, but X
itself as a function is not random.

1.2 Conditional probabilities and expectations

Conditioning is often taught using conditional probability distributions, e.g. defining the conditional prob-

abilities densities as p(x|y) = p(x,y)
p(y) using Bayes’ Theorem. Though probabilities are often considered to be

more fundamental, especially in undergrad classes, it is not necessarily the right way to think about it. In
the particular above definition when one conditions on a random variable, it is even unclear whether such
an object exists.

Therefore, instead of conditional probability distributions let us look at conditional expectations which
have a clear interpretation first. Conditional probability distributions can then be defined using conditional
expectations. In fact expectations are “equally fundamental” since expectations can always be thought of
as probabilities of indicator functions, i.e. P (X ∈ A) = E 1X∈A.

Let us look at the well-known tower property and the objects involved more carefully

E E (X|Y ) = E X

The conditional expectation E (X|Y ) itself is a random variable, thus a measurable function which acts
on the sample space, i.e. E (X|Y )(ω) and is constant on the sets {ω ∈ Ω : Y (ω) = y}. If you take
the expectation of this random variable (take the weighted average over the sample space) you obtain the
expectation of X.

The conditional distribution on the random variable Y is also a random variable defined as

P (X ∈ A|Y ) = E (1X∈A|Y )
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The total probability can then be computed as

P (X ∈ A) = E P (X ∈ A|Y )

=

∫
P (X ∈ A|y)dPY (y)

2 Sufficiency and Completeness

Why is sufficiency important? Originally it was intended to save disk space on the computer by only saving
the sufficient statistics for estimating parameters from the data. Nowadays this problem is obsolete since
disk space is often not the limiting factor. Still sufficient statistics turn out to be useful for answering the
question: How does the data relate to the parameter? We will e.g. see that MLE comes from sufficiency.

2.1 Minimal sufficiency

We have defined sufficient statistics for family of distributions P last lecture. The random variable/vector
X itself is always a sufficient statistic. The question is: Can I reduce it further? This motivates the notion
of a minimal sufficient statistic.

Let T be sufficient. Suppose that T = f(T̃ ) (with f measurable, in general many-to-one), then T̃ is sufficient,
i.e.

pθ(x) = h(x)gθ(T (x)) = h(x)g̃θ(T̃ (x))

with g̃θ = gθ ◦ f .

Definition 1 (Minimal sufficiency, Def 3.9 in Keener.). A statistic T is minimal sufficient if T is sufficient
and for all sufficient T̃ , there exists a function f s.t. T = f(T̃ ) (a.e. P). Here (a.e. P) means that the set
where it fails is a null set for every P ∈ P.

Showing minimal sufficiency is non-trivial. A general trick is use the following fact: The likelihood, viewed
as a function of θ yields the “likelihood shape”, which in turn is minimal sufficient. The following theorem
makes this explicit

Theorem 2 (Thm 3.11 in Keener). Suppose that the family P is dominated (i.e. are absolutely continuous
with respect to some measure µ) and that there is a sufficient statistic T . Then (by the factorization theorem)
we can write for the density

pθ(x) = gθ(T (x))h(x) (a.e. µ)

If pθ(x) ∝θ pθ(y) (proportional when viewed as a function of θ) implies T (x) = T (y), then T is minimal
sufficient.

The intuition behind it is that if the observations x, y are actually indistinguishable from the point of view
of inference (likelihood shape), then if T is minimal, it should not make a distinction between x, y either.

Proof. Suppose that T̃ is sufficient. Then

pθ(x) = g̃θ(T̃ (x))h̃(x)

We now prove by contradiction: Given pθ(x) ∝θ pθ(y) =⇒ T (x) = T (y) suppose T is not minimal, thus
not a function of T̃ . Then there exists x, y such that

T̃ (x) = T̃ (y) but T (x) 6= T (y)
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and consequently

pθ(x) = g̃θ(T̃ (x))h̃(x) ∝θ g̃θ(T̃ (y))h̃(y) = pθ(y)

But since T (x) 6= T (y) the original implication is not valid which is a contradiction.

Example 3. Let

Xi
i.i.d∼ fθ(x) =

1 + θx

2
|x| ≤ 1, θ ∈ [−1, 1]

Claim: The order statistics X(1), X(2), . . . (Xi sorted in increasing order) are minimal sufficient.
Proof: We write

pθ(x) =
1

2n

n∏
i=1

(1 + θxi) =
1

2n

n∏
i=1

(1 + θx(i))

which is a polynomial of θ. They have the same roots at {− 1
xi
}. Now suppose that pθ(x) ∝θ pθ(y), so that

they have the same roots, i.e. 1
x(i)

= 1
y(i)

. Hence T (x) = {x(i)} = {y(i)} = T (y).

Example 4 (Ex. 3.13. in Keener).

Xi
i.i.d∼ 1

2
e−|x−θ|

Note that this distribution is not from the exponential family. Again the order statistics are minimal.

Definition 5 (Full-rank). An exponential family P is considered full-rank if the image η(Ω) contains an
open set in Rs.

Example 6 (Ex. 3.12. in Keener). Let P be an s-parameter exponential family.

pθ(x) = h(x) exp(η(θ)TT (x)−B(θ))

Suppose pθ(x) ∝θ pθ(y), which implies that

eη(θ)
TT (x) ∝ eη(θ)

TT (y) =⇒ η(θ)TT (x) = η(θ)TT (y) + c

For all θ0, θ1 pairs in Ω we have that

(η(θ0)− η(θ1))T (T (x)− T (y)) = 0 (1)

This is an orthogonality statement, so it doesn’t generally imply that T (x) = T (y). However if the expo-
nential family is full-rank, the image of η(θ0)− η(θ1) for all θ0, θ1 ∈ Ω “includes all directions”. In this case,
equality (1) implies that T (x) = T (y) and T is minimal sufficient.

Note: An interesting reading on exponential families is Lawrence Brown’s monograph (Brown (1986)) cov-
ering duality and convexity and their relationship to exponential families.

3 Completeness

Definition 7 (Completeness). A statistic T is complete for a family P, if

E θf(T ) = c ∀θ =⇒ f(T ) = c ( a.e. P)
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Example 8. Let

Xi
i.i.d∼ Unif(0, θ)

where θ ∈ (0,∞).

T (maxi(Xi)) is sufficient by the factorization theorem. To find the density we observe

Pθ(T ≤ t) = Pθ(X1 ≤ t) · · ·Pθ(Xn ≤ t) =

(
t

θ

)n
Therefore, by taking the derivative we arrive at

pθ(t) = n
tn−1

θn

Suppose E θf(T ) = c for all θ. Then, because

E θ(f(T )− c) =
n

θn

∫ θ

0

(f(t)− c)tn−1dt = 0

holds for all θ, we have that f(t)− c = 0 (see fact 4 in Section 1.4. in Keener). Note that this doesn’t hold
for a family with the same distributions but where θ is in the range e.g. [1,∞).

Theorem 9. If T is sufficient and complete, then it is minimal sufficient.

Proof. Let T̃ be minimal sufficient. Let T and T̃ be bounded random variables. By minimality we have
T̃ = f(T ). Let g(T̃ ) = E θ(T |T̃ ) which is not dependent on θ by sufficiency. The tower property yields
E θg(T̃ ) = E θ(T ). This implies that E θ(T − g(T̃ )) = 0 and by completeness T = g(T̃ ). Because also
T̃ = f(T ), we have a one-to-one mapping between T and T̃ .

Definition 10 (Ancillarity). V is ancillary, if its distribution does not depend on θ.

Theorem 11 (Basu). Let T be sufficient and complete. Let V be ancillary. This implies that T is indepen-
dent of V for all θ.
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