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1 Uniform Minimum Variance Unbiased estimators (UMVU) cont.

Recall the result establishing the existence of UMVU estimators (thm 4.4 in Keener (2010)): Let g(θ) be a
U-estimable parameter. If T is a complete sufficient statistic, then there exist an essentially unique estimator
of g(θ) based on T that is UMVU. Furthermore, the proof is constructive, where the UMVU can be derived
from any unbiased estimator by a Rao-Blackwellization procedure with respect to the statistic T .

Example 1: Let Xi ∼ Unif(0, θ) i.i.d. random variables for i = 1, · · · , n. Then T = maxiXi is a sufficient
and complete statistic for this family of distributions. But T , considered as an estimator of θ, is biased
towards the left since T ≤ θ a.s. Let’s construct an unbiased estimator based on T . Let η(T ) be a statistic
which is function of T . The unbiasedness of η(T ) amounts to∫ θ

0

η(t)
ntn−1

θn
dt = θ,

which leads to ∫ θ

0

η(t)ntn−1dt = θn+1.

By differentiating w.r.t. θ and rearranging terms, we get

η(t) =
n+ 1

n
t.

We saw in previous lectures another unbiased estimator (not based on T ): δ = 2X̄, where X̄ is the sample
average. Which, if either, estimator is best? A calculation of the variances of these estimator shows that

Var(η(T )) =
3

n+ 2
Var(δ).

Hence, the variance of η(T ) is much smaller than that of δ. The ratio is in fact vanishing as the sample
size grows. Given that both estimators are unbiased, this means that their risks under the quadratic loss
compare in the same way.

Example 2: Let Xi ∼ Bern(θ) i.i.d. Bernoulli random variables of parameter θ for i = 1, · · · , n, and let
g(θ) = θ2 be the quantity to be estimated. Squaring an estimator of θ (e.g. X̄) will typically be a biassed
estimator. Let’s try δ = X1X2. By independence of X1 and X2 we indeed have E(δ) = θ2. To obtain a
better (even UMVU) estimator, we Rao-Blackwellize δ: T =

∑n
i=1Xi is a complete sufficient statistic. Then,

E(δ|T = t) = E(X1X2|T = t) = P (X1X2 = 1|T = t)

=
P (X1 = 1, X2 = 1, T = t)

P (T = t)
=
θ2
(
n−2
t−2

)
θt−2(1− θ)n−t(

n
t

)
θt(1− θ)n−t

=
t(t− 1)

n(n− 1)
.
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By theorem 4.4 in Keener (2010), T (T−1)
n(n−1) is UMVU.

2 Bias-Variance tradeoff:

Let’s consider the setting described Example 1. We showed that n+1
n T is UMVU. Now, consider the estimator

δ(X) = aT for some a ∈ R. The quadratic loss of this estimator is

R(θ, δ) = Eθ(aT − θ)2 = a2E(T 2)− 2aθE(T ) + θ2.

We have E(T ) = n
n+1θ and E(T 2) = n

n+2θ
2. Then minimizing the above quadratic in a yields a = n+2

n+1 ,

hence δ∗(X) = n+2
n+1T is optimal for the risk function R in the class of estimators that are proportional to

T . This shows in particular that δ∗ has a smaller risk than the UMVU, since the latter also belongs to this
class. This together with the fact that δ∗ is biased, suggests that allowing some bias can significantly reduce
the overall risk, hinting to the possibility that considering only unbiased estimators is limiting. The next
example will demonstrate the failure of unbiasedness as a general inferential principle.

The failure of UMVU. Let X be a Poisson-distributed r.v. with mean θ. Suppose that the distribution
of X is truncated at 0, i.e. we observe X only if its value is greater than or equal to 1. Suppose that we
want to estimate the mass of the probability distribution of X that is lost to this truncation process (i.e.
estimate P (X = 0) = e−θ). If δ is any unbiased estimator of the former parameter, one has

∞∑
k=1

δ(k)
θke−θ

k!(1− e−θ)
= e−θ

which can be rewritten as
∞∑
k=1

δ(k)
θk

k!
= 1− e−θ =

∞∑
k=1

(−1)k+1 θ
k

k!

Hence, δ(k) = (−1)k+1. This means that if we insist on unbiasedness, we have to estimate e−θ —which is a
positive quantity— by (−1)X+1 which is equal to -1 whenever X is even, which happens about half of the
time! Alternatively, if one gives up on unbiasedness, better estimators could be found.

3 Normal one-sample distribution theory

Consider a random variable X ∼ N(µ, σ2) and define Z = X−µ
σ ∼ N(0, 1). Some properties of the normal

distribution:

• aX + b ∼ N(aµ+ b, σ2).

• The moment generating function (MGF) of Z is

MZ(u) = eu
2/2.

• Hence the MGF of X is

MX(u) = eµu+u2σ2

2 .

• If Xi ∼ N(µi, σ
2
i ) for i = 1, 2 independent, then X1 +X2 ∼ N(µ1 + µ2, σ

2
1 + σ2

2).
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Given a random sample X1, · · · , Xn from N(µ, σ2), the joint distribution form to a full-rank exponential
family of parameter θ = (µ, σ2) with a complete sufficient statistic T = (

∑n
i=1Xi,

∑n
i=1X

2
i ). Alternatively,

one can work with the statistic (X̄, S2) where X̄ = 1
n

∑n
i=1Xi and S2 = 1

n−1

∑n
i=1(Xi − X̄)2 which is also

complete and sufficient since there is a one-to-one mapping that links it to T . Recall that by Basu’s theorem
(thm 3.21 in Keener (2010)), X̄ and S2 are independent. From the first bullet above, the distribution of X̄

is N(µ, σ
2

n ). Deriving the distribution of S2 is a bit more intricate. Consider the Gamma distribution with
parameters α > 0 and β > 0, denoted Γ(α, β) of density

fα,β(x) =
1

βαΓ(α)
xα−1e−x/β

for x > 0 and zero otherwise. Γ being the standard Gamma function defined as Γ(α) =
∫∞

0
xα−1e−xdx. For

a r.v. X having this density we have E(X) = αβ and Var(X) = αβ2. The MGF of X is

MX(u) = EeuX =

∫ ∞
0

eux
1

βαΓ(α)
xα−1e−x/βdx

=

∫ ∞
0

xα−1 e
(u−1/β)x

βαΓ(α)
dx

=
1

(1− βu)α
for u < 1/β.

Chi-square: The chi-square distribution is a special case of the Gamma distribution, but generally defined
using the normal distribution: If Z ∼ N(0, 1) then Z2 is said to have a chi-square distribution with one
degrees of freedom, denoted χ2

1. To establish the link between χ2
1 the Gamma distribution, let’s compute

the MGF of Z2:

MZ2(u) = EeuZ
2

=

∫ ∞
0

eux
2 1

βαΓ(α)
xα−1e−x/βdx =

1

(1− 2u)1/2
≡ Γ(1/2, 2).

From the formula above, it is immediate that if Xi ∼ Γ(αi, β) are independent r.v.’s then
∑
iXi ∼

Γ(
∑
i αi, β). Hence, if Zi ∼ N(0, 1) are independent then

p∑
i=1

Z2
i ∼ Γ(p/2, 2) ≡ χ2

p.

χ2
p is called the chi-square distribution with p degrees of freedom. Now, let’s back to the problem of

deriving the distribution of S2. Let X1, · · · , Xn from N(µ, σ2), Zi = Xi−µ
σ ∼ N(0, 1) for every i and

Z̄ = X̄−µ
σ ∼ N(0, 1/n). Then

√
nZ̄ ∼ N(0, 1) and nZ̄2 ∼ χ2

1.

Let V = (n−1)S2

σ2 =
∑n
i=1

(
Xi−X̄
σ

)2
=
∑n
i=1(Zi − Z̄)2 =

∑n
i=1 Z

2
i − nZ̄2. This implies V + nZ̄2 ∼ χ2

n. Note
that nZ̄2 is only a function of X̄ and V is only a function of S2, hence nZ̄2 and V are independent. Thus,
the MGF of V + nZ̄2 can be decomposed:

MV+nZ̄2(u) = MnZ̄2(u)MV (u) =
1

(1− 2u)n/2
.

Which yields V ∼ χ2
n−1. This along with the fact X̄ ∼ N(µ, σ

2

n ) determines the joint distribution of the pair
(X̄, S2) by independence.
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