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1 Asymptotic Distribution of the Order Statistics

Last time we saw that
√
n(X̃n − θ) =⇒ N

(
0,

1

4[F ′(θ)]2

)
,

where X̃n is the median of the random variables X1, X2, ..., Xn i.i.d. with cumulative distribution function
F (we assumed that there exists a unique θ such that F (θ) = 1/2, otherwise F ′(θ) = 0). This result can be
extended to any order statistic.

Theorem 1 (keener’s, thm 8.18). Let (Xi)i>1 be i.i.d. random variables with common cumulative distri-

bution function F , let γ ∈ (0, 1), and let θ̃n be the bγncth order statistic for X1, X2, ..., Xn (or a weighted
average of the bγncth and dγneth order statistics). If F (θ) = γ, and if F ′(θ) exists and is finite and positive,
then

√
n(θ̃n − θ) =⇒ N

(
0,
γ(1− γ)

[F ′(θ)]2

)
,

as n→∞.

Proof. The proof is similar to the proof given for the case γ = 1/2. The idea is to express the distribution
of
√
n(θ̃n − θ) in terms of a binomial distribution and then apply the CLT.

Remark 2. The n-th order statistic X(n) = max16i6nXi does not satisfy this property. A different scaling
is needed to find a limiting distribution for X(n).

2 Asymptotic Relative Efficiency

In this section we compare the asymptotic behavior of X̃n and Xn, the median and the mean of X1, X2, ..., Xn

i.i.d. with distribution F , for different choices of the cumulative distribution F . Such a comparison makes
sense only if both the median and the mean estimate the same parameter. This is the case when F has
density f(x− θ), with f symmetric about zero.

By the CLT we know that √
n(Xn − θ) =⇒ N(0, σ2),

where

σ2 =

∫
(x− θ)2f(x− θ)dx =

∫
x2f(x)dx.

Also, by what we discussed in the previous section, we know

√
n(X̃n − θ) =⇒ N

(
0, σ̃2

)
,

1
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where σ̃2 = 1
4[F ′(θ)]2 = 1

4f(0)2 .

Example 3. Take f(x) = 1√
2π
e−

x2

2 , the density of the standard normal. Then σ2 = 1 and σ̃2 = π
2 . Since the

limiting variance of the median is larger than that of the mean, we expect that the mean if more ”efficient”
than the median. This is clearer if we look at the number of data points needed by the median to yield
an estimate with the same asymptotic variance as the mean. We make this explicit. Let m = bπn/2c, and
observe that

√
n/m→

√
2/π as n→∞. By Slutzki’s theorem,

√
n(X̃m − θ) =

√
n

m

√
m(X̃m − θ) =⇒ N(0, 1).

This suggests that the estimate produced by the median using π/2 times the data used by the mean behaves
as good as the estimate produced by the mean. Although Xn seems to behave better than X̃n, sometimes
we might choose the latter estimator because it is more robust to outliers.

The previous example motivates us to define the asymptotic relative efficiency (ARE) of two estimators θn
and θ̃n as follows. Suppose

√
n(θn − θ) =⇒ N

(
0, σ2

θ

)
√
n(θ̃n − θ) =⇒ N

(
0, σ2

θ̃

)
,

then the ARE of θn with respect to θ̃n is
σ2
θ̃

σ2
θ

.

Example 4. Let f(x) = 1
2e
−|x|. Then

σ2 =

∫ ∞
−∞

x2
1

2
e−|x|dx =

∫ ∞
0

x2e−xdx = Γ(3) = 2, and

σ̃2 =
1

4f(0)2
= 1.

Hence the ARE of X̃n with respect to Xn is 2.

Example 5. Let X1, X2, ..., Xn be i.i.d. samples from N(θ, 1). We are interested in estimating

p = Pθ(Xi 6 a) = Φ(a− θ).

Two natural choices of estimators are:

p̂ = Φ(a−X), where X =
1

n

n∑
i=1

Xi (this is the MLE estimator)

p̃ =
1

n

n∑
i=1

1Xi6a.

The CLT immediately implies that
√
n(p̃− p) =⇒ N(0, σ̃2), where

σ̃2 = Var(1Xi6a) = Φ(a− θ)(1− Φ(a− θ)).

On the other hand, p̂ is a function of X, so the delta method implies that

√
n(p̂− p) =⇒ N(0, σ̂2),
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where

σ̂2 =

[
∂

∂x
Φ(a− x)

∣∣∣∣
θ

]2
= φ2(a− θ).

Therefore, the ARE of p̂ with respect to p̃ is

ARE =
Φ(a− θ)(1− Φ(a− θ))

φ2(a− θ)
.

We note that the ARE depends on θ. When θ = a the ARE is π/2, and as |θ − a| increases the ARE
increases without bound. Nonetheless, the estimator p̃ is sensible when the model is wrong, while p̂ is a good
estimator only when the model is correct.

3 Limiting distribution of the MLE

Recall that we derived the limiting distribution of the MLE of an exponential family.

√
n(η̂ − η) =⇒ N

(
0,

1

A′′(η)

)
,

where η̂ = ψ(T ). This result can be extended to other families of distributions. The following theorem
makes this explicit.

Theorem 6 (keener’s, thm 9.14). Assume:

1. Variables X,X1, X2, ... are i.i.d. with common density fθ, θ ∈ Ω ⊂ R.

2. The set A = {x : fθ(x) > 0} is independent of θ.

3. For every x ∈ A, ∂2fθ(x)/∂θ2 exists and is continuous in θ.

4. Let W (θ) = log fθ(X). The Fisher information I(θ) from a single observation exists, is finite and can be
found using either

I(θ) = EθW
′(θ)2 or I(θ) = −EθW ′′(θ).

Also, EθW
′(θ) = 0.

5. For every θ in the interior of Ω there exists ε > 0 such that

Eθ‖1[θ−ε,θ+ε]W ′′‖∞ <∞.

6. The maximum likelihood estimator θ̂n is consistent.

Then for any θ in the interior of Ω,

√
n(θ̂n − θ) =⇒ N

(
0,

1

I(θ)

)
,

as n→∞.

Proof. We just sketch the main idea. Let Wn(ω) = 1
n

∑n
i=1 log fω(Xi). Then by the mean value theorem we

know that
W
′
n(θ̂n) = W

′
n(θ) +W

′′
n(θ̃n)(θ̂n − θ),
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for some θ̃n ∈ [θ, θ̂n]. Since θ̂n maximizes Wn, W
′
n(θ̂n) = 0. Hence

√
n(θ̂n − θ) =

√
nW

′
n(θ)

−W ′′n(θ̃n)
,

and we will analyze the limiting distribution of this ratio in the following lectures using empirical process
theory.


