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1 Central Limit Theorem and Other Asymptotic Results

Definition 1 (Convergence in Distribution). Let Y;, be a sequence of random variables, H,, be the CDF of
Y,, and H be the CDF of Y. Y, -5 Y if H,(y) — H(y) if H is continuous at y.

Lemma 2 (Two Implications of Convergence in Distribution). .

1Y, Ay iff Ef(Y,) = Ef(Y) V bounded, continuous functions f.

2.Y, Y and g is continuous = ¢g(Yy,) LN g(Y).

Theorem 3 (Central Limit Theorem). Given X; i.i.d. with mean u, variance o2,

Vi(Xn — 1) -5 N(0,02)
Proof. Can be found in Stat 205A, follows from basic Fourier analysis O

Example. Let H,, be the CDF of v/n(X,, — p). What is P(up—a/v/n < X, < p+a/y/n)?

P(ﬂ_a/\/ﬁSXn S/L‘i'a/\/ﬁ) =P(-a< \/B(Xn_.u) <a)
= H,(a) — Hy(—a) -5 ®(a/o) — B(—a/o)
(By the CLT)

Theorem 4 (Slutsky’s Theorem). Suppose Y, BN Y, A, N a, By, L5 b Then
Ap+ BYn -5 a4 bY
Delta Method Given assumptions underlying the CLT (3) and f is differentiable at p,

VIF(Xn) = F() =5 N(O, (' (1))*0%)
Definition 5 (Uniform Integrability).

sup E[| X, |1x, |>¢] = 0 as t — oo
n>1 -

Theorem 6 (8.16). X, ~Ly X & uniform integrability = E[X,]) = E[X]
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2 Maximum Likelihood Estimator (MLE)

If X has density pg and L(6) = pg(z), then x5 = argmax,L(6).
What is the MLE of ¢(0)? (QMLE)

Example. Exponential Family

pn(x) = exp(nT'(z) — A(n))h(z)
log py(z) = ( ) — A(n) + log h(z)
5677 log p,(z) =T(z) — A'(n) =0
T(x) = A'(n)

Nvre = ¥(T) where v is the inverse of A’

(Show the second derivative is always < 0)
82
o log p,(z) = —A"(n) = =Var(T) <0

If we look at this in a random sample, {X;}

0= ZT(IZ) —nA'(n) = fHmre =Y(T)

What about estimating p = E,[T?

E,[T)=A'(n) = jiure = A'(ivre) = A'(A~Y(T)) = T which is UMVU

Now for the derivative of ¢. Given ¢(T) =n, A’(n) =T, then A”(n) = dn We want to calculate 2 T

dn 1 1 .
i~ A (Ao u)T) (setting up the delta method)

Evaluate at p = E,[T] = A'(n) =

1 _ 1 1
A" (p(A'(m)) — A’(m) T Var(T)
By the Delta Method,

Vil — 1)~ N (0, Al(n))

[Note: we’ve seemingly achieved the Cramer-Rao bound]
How does this relate to Cramer-Rao?

Fisher Info (Exponential Family): A”(n) [proved previously] For unbiased 7,

- 1 1
Varn(n) Z TLA”('(]) = Vm"n(n 77) A,/( )

Var,y/i(ii — 1) = nVaryi
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MLE achieves Cramer-Rao in an asymptotic sense

e This is an heuristic argument! Super efficiency throws a wrench in the works (some points can break
CR bound)

Martin will discuss in 210B

Keener in Ch 16 is harder to read, vander Vaart presents it nicely

3 Asymptotic Relative Efficiency (ARE)

Example. Compare the mean and median: which has the smaller limiting variance?
Mean follows CLT, limiting distribution is N(0,o?).

Median (actually all quantiles)
5 X(m) n=2m —1 (odd)
" 12Xy + Xmgny] 1 =2m (even)
Let {X;} be ii.d. F, and let F have a unique median 6. F(0) = 1/2, and assume 0 < F'(0) < oco.

We want to approximate ~ ~
P(vn(X, —0) <a) = P(X, <0+a/Vn)
“Trick” step. Let S, = #{i <n: X; <0+ a/\/n}. These can be thought of as Bernoulli dots, do they fall
before or after 8 + a/\/n?
We have X, <f0+a/\y/n < S,>m.

Sy ~ Bin(n, F(0 + a/+/n)) CLT for Binomials: say Y;, ~ Bin(n,p). Then, CLT implies

Vi(Ya/n —p) - N(0,p(1 - p))

P(Brs )i (B ey g (Y e (o)

Now we can continue with our approximation from above:
5 Q) = m _ Sp—nF@+a/yn _ m+1—nF@+a/vn
P(Vn(X, —0)<a)=P(S,>m+1)=P < NG > n >
o ( (nF(0 +a/v/n) —m+1)/v/n )
VF(O+a/Vn)(1—F(0+a/yn))
F@+a/yn)—F@) nF)—m+1
o

(First term is deriv of F at 6, second goes to 0), denominator of this approaches 1/2

So,

aF'(0)

Numerator = a

In conclusion:

P(v/n(Xy, —0) < a) = ®(2aF'(0)) = /(X, —0) -5 N (0’ m )



