UC Berkeley Department of Statistics

STAT 210A: Introduction to Mathematical Statistics

Problem Set 9

Fall 2014

Issued: Friday, November 7 **Due:** Thursday, November 13 (beginning of class)

Problem 9.1

Suppose $X \sim N_p(\theta, I)$ and consider testing $H_0: \theta \in \Omega_0$ versus $H_1: \theta \notin \Omega_0$.

(a) Show that the likelihood ratio test statistic λ is equivalent to the distance D between X and Ω_0 , defined as

$$D = \inf\{\|X - \theta\| : \theta \in \Omega_0\}.$$

(b) Using part (a), a generalized likelihood ratio test will reject H_0 if D > c. What is the significance level α for this test if p = 2 and $\Omega_0 = \{\theta : \theta_1 \leq 0, \theta_2 \leq 0\}$?

Problem 9.2

Suppose that Y_1, \ldots, Y_n are i.i.d. samples from a normal $N(\mu, \sigma^2)$ distribution where $\sigma^2 > 0$ is known. We wish to test the hypothesis $H_0: \mu = \mu_0$ versus the alternative $H_1: \mu = \mu_1 > \mu_0$ using the sample mean $\bar{Y}_n = \frac{1}{n} \sum_{j=1}^n Y_j$.

- (a) Suppose that we reject the null hypothesis if $\bar{Y}_n \geq t_{\alpha}$. Specify the choice of t_{α} that yields a test of level α .
- (b) Show that the power of this test can be expressed as

$$\beta(\mu_1) = \Phi(z_\alpha + \delta_n)$$

where $z_{\alpha} = \sqrt{n} (\mu_0 - t_{\alpha})/\sigma$, and $\delta_n = \sqrt{n} (\mu_1 - \mu_0)/\sigma$. Explain what happens to the power as $(\mu_1 - \mu_0)$ increases/decreases, σ increases/decreases, or n increases. Why is this reasonable?

(c) Now suppose that we instead observe the thresholded quantities $Z_i = \mathbb{I}[Y_i \geq \mu_0]$. (This might happen when data communication rates are limited, so that only a single bit can be transmitted.) Using the normal approximation to the binomial distribution, show that the power function for a level- α test using the mean \bar{Z}_n can be approximated as

$$\beta_Z(\mu_1) \approx \Phi \left\{ \frac{n\Phi(\delta_n/\sqrt{n}) - n/2 + \sqrt{n}z_{\alpha}/2}{\left[n\Phi(\delta_n/\sqrt{n})\left\{1 - \Phi(\delta_n/\sqrt{n})\right\}\right]^{1/2}} \right\}.$$

(d) Using the approximation $\Phi(\delta_n/\sqrt{n}) \approx \frac{1}{2} + (\delta_n/(\sqrt{2\pi n}))$, show that the power from (c) further simplifies to

$$\beta_Z(\mu_1) \approx \Phi\left(z_\alpha + \sqrt{\frac{2}{\pi}}\delta_n\right).$$

Note: Comparing this power to that from part (b) provides an indication of what is lost by the thresholding operation.

1

Problem 9.3

(A nonparametric hypothesis test) A set of i.i.d. samples Y_1, \ldots, Y_n is drawn from an unknown distribution F. The null hypothesis H_0 asserts that F has median $\mu = \mu_0$, while the alternative H_1 asserts that $\mu > \mu_0$. (Note that both hypotheses are composite, but neither is based on a parametric model, since only μ_0 is given while the form of F is unknown.)

- (a) Consider the statistic $S = \sum_{i=1}^{n} \mathbb{I}[Y_i > \mu_0]$. Compute the exact distribution of S under the null hypothesis. How could this be useful in performing a hypothesis test?
- (b) Consider the test $\delta_s(Y)$ that rejects H_0 when S exceeds some threshold s. Use asymptotic theory to approximate the level $\alpha(s) = \mathbb{E}_0[\delta_s(Y)]$ of this test under H_0 as a function of s. (This test is known as a nonparametric $sign\ test$.)

Problem 9.4

Suppose that we use a prior $\lambda = [\lambda_0 \quad (1 - \lambda_0)]$ for a binary hypothesis test $H_0: \theta = \theta_0$ versus $H_1: \theta = \theta_1$ where $\lambda_0 = \mathbb{P}[\theta = \theta_0]$.

(a) Show that the Bayes risk under 0-1 loss can be written as

$$r(\lambda, \delta) = \lambda_0 \mathbb{E}_0[\delta(X)] + (1 - \lambda_0) \{1 - \mathbb{E}_1[\delta(X)]\}.$$

- (b) Show that any test minimizing the Bayes risk can be expressed as a likelihood ratio test where the threshold t is a function of λ_0 .
- (c) Suppose that we are given i.i.d. samples X_1, \ldots, X_n from \mathbb{P}_{θ} (where θ is either equal to θ_0 or θ_1). For any fixed $\lambda_0 \in (0,1)$, let $\delta_{n,\lambda}$ denote the Bayes test derived in part (b). Prove that $\lim_{n \to +\infty} r(\lambda, \delta_n) = 0$.

Problem 9.5

For each of the following problems, compute the generalized likelihood ratio test, and compute its asymptotic distribution under the specified hypothesis H_0 .

- (a) Let X_1, \ldots, X_n be an i.i.d. sample of $N(\mu_x, \sigma_x^2)$ variates, and let Y_1, \ldots, Y_n be an i.i.d. sample of $N(\mu_y, \sigma_y^2)$ variates. Consider testing $H_0: \mu_x = \mu_y$ and $\sigma_x^2 = \sigma_y^2$.
- (b) For i = 1, ..., k, let $X_{i1}, ..., X_{in}$ be independent samples from Poisson distributions with means θ_i , respectively. Consider testing $H_0: \theta_1 = \theta_2 = ... \theta_k$.
- (c) Let $X_1, ..., X_n$ be an i.i.d. sample from the exponential distribution with parameter θ , and $Y_1, ..., Y_n$ an i.i.d. sample from the exponential distribution with parameter μ . Consider testing $H_0: \mu = 2\theta$.