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1 Rest of Stein’s Paradox

We went through the section 3 (Interpretation and Extension) of Stigler (1990)’s paper on Stein’s paradox .
The regression perspective not only makes the logic of the estimation clear, it also leads to a short, rigorous
proof of the phenomenon. Proof of the superiority of the James-Stein estimator is detailed in this section of
the paper.

2 Hypothesis Testing

We talked about some history about the development of hypothesis testing and Jerzy Neyman’s life. More
information about the history could be found on Wikipedia and also the 10th floor of Evans Hall.

2.1 Definitions of terms

In hypothesis testing, data are used to infer which of two competing hypotheses is correct. It is formulated
as a decision problem. The following definitions of terms are used throughout the chapter.

Definition 1 (Null hypothesis (H0)). A null hypothesis (H0) and alternative hypothesis (H1) are written

H0 : θ ∈ Ω0, H1 : θ ∈ Ω1; where Ω0 ∩ Ω1 = ∅,Ω0 ∪ Ω1 = Ω.

Definition 2 (Critical Region (S)). The critical region is the set of values of the test statistics for which
we accept H1.

“Accept H1” if x ∈ S
“Accept H0” if x 6∈ S

Definition 3 (Power Function). The performance of the test if described by its power function β(.), which
gives the chance of rejecting H0 as a function of θ ∈ Ω:

β(θ) = Pθ(X ∈ S).

In the mathematical formulation for hypothesis testing just presented, the hypothesis H0 and H1 have a
symmetric role. But in applications H0 generally represents the status quo, or what someone would believe
about θ without compelling evident to the contrary. In view of this, attention is often focused on tests that
have a small chance of error when H0 is correct. Here comes the Neyman-Pearson setting of hypothesis
testing.
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Definition 4 (Neyman-Pearson setting of hypothesis testing). Set a significance level α defined as:

α = sup
θ∈Ω0

β(θ)

and then maximize power function over Ω1

For technical reasons it is convenient to allow external randomization to help the researcher decide between
H0 and H1. Randomized tests are characterized by a test function ϕ with range a subset of [0, 1]. Given
X = x, ϕ(x) is the probability of rejecting H0. The power function β still gives the chance of rejecting H0

and by smoothing:

β(θ) = Pθ(reject H0) = Eθ[Pθ(reject H0|X)] = Eθϕ(X).

Note that a nonrandomized test with critical region S can be viewed as a randomized test with ϕ = 1S .

The set of all test functions is convex, for if ϕ1 and ϕ2 are test functions and γ ∈ (0, 1), then γϕ1 + (1−γ)ϕ2

is also a critical function. For randomized tests the level α is defined as

α = sup
θ∈Ω0

β(θ) = sup
θ∈Ω0

Eθϕ(X).

3 Simple Versus Simple Testing

A hypothesis is called simple if it completely specifies the distribution of the data, so Hi: θ ∈ Ωi is simple
when Ωi contains a single parameter value θi. When both hypotheses, H0 and H1 are simple, the Neyman-
Pearson lemma (Proposition 12.2 of Keener (2010)) provides a complete characterization of all reasonable
tests.

Suppose H0 and H1 are both simple, and let p0 and p1 denote densities for X under H0 and H1, respectively.
Since there are only two distributions for the data X, the power function for a test ϕ has two values,

E0ϕ(X) =

∫
ϕ(x)p0(x)µ(dx)

and

E1ϕ(X) =

∫
ϕ(x)p1(x)µ(dx)

Then Neyman-Pearson problem can be formulated as follows:

maximize E1ϕ

s.t. E0ϕ ≤ α.

The following proposition shows that the solutions of unconstrained optimization problems with Lagrange
multiplier (k) also solve the Neyman-Pearson optimization problem in this case.

Lemma 5 (Propostion 12.1. of Keener (2010)). Suppose k ≥ 0, ϕ∗ maximize

E1ϕ = kE0ϕ

among all test functions, and E0ϕ
∗ = α. Then ϕ∗ maximizes E1ϕ under the constraint.
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Proof. Suppose ϕ has level at most α, E0ϕ ≤ α. Then

E1ϕ ≤ E1ϕ− kE0ϕ+ kα

≤ E1ϕ
∗ − kE0ϕ

∗ + kα

= E1ϕ
∗

Maximizing E1ϕ− kE0ϕ is fairly easy because

E1ϕ− kE0ϕ =

∫
[p1(x)− kp0(x)]ϕ(x)µ(dx)

=

∫
p1(x)>kp0(x)

|p1(x)− kp0(x)|ϕ(x)µ(dx)

−
∫
p1(x)≤kp0(x)

|p1(x)− kp0(x)|ϕ(x)µ(dx)

Then the optimal test ϕ∗ must have

ϕ∗(x) = 1, when p1(x) > kp0(x)

0, when p1(x) < kp0(x)

When division by zero is not an issue, these tests are based on the likelihood ratio L(x) = p1(x)/p0(x).
When L(x) > k, ϕ = 1 and ϕ = 0 if L(x) < k. When L(x) = k, ϕ(x) can take any value in [0, 1]. Any test
of this form is called a likelihood ratio test.

Lemma 6 (Neyman-Pearson Lemma, Propostion 12.2. of Keener (2010)). Given any level α ∈ [0, 1], there
exists a likelihood ratio test ϕα with level α, and any likelihood ratio test with level α maximize E1ϕ among
all tests with level at most α.

The fact that likelihood ratio tests maximize E1ϕ among tests with the same or smaller level follows from
the previous lemma. The next result shows that if a test is optimal, it must be a likelihood ratio test.

Lemma 7 (Propostion 12.3. of Keener (2010)). Given α ∈ [0, 1], let k be the critical value for a likelihood
ratio test ϕα and let B = {x : p1(x) 6= kp0(x)}. If ϕ∗ maximizes E1ϕ among all tests with level at most α,
then ϕ∗ and ϕα most agree on B.
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