Problem Bank 2: Complex Differentiation and Integration

Kreyszig	Topics	Slide No.s
Section		
No.s		
13.3	Derivatives. Analytic Functions	13-24
13.4	CauchyRiemann Equations. Laplaces Equation	
14.1	Line Integral in the Complex Plane	34-47
14.2	Cauchys Integral Theorem	
14.3	Cauchys Integral Formula	
14.4	Derivatives of Analytic Functions	

1 Derivative. Analytic Function

derivatives example:

derivatives example 2

- 1. Determine and skectch or graph the sets in the complex plane given by
 - (a) $|z+1-2i| \le \frac{1}{4};$
 - (b) $-\pi < \operatorname{Im}(z) < \pi;$
 - (c) $\operatorname{Re}(z) \leq 1;$
 - (d) $|z+i| \ge |z-i|;$
- 2. Find $\operatorname{Re}(f)$ and $\operatorname{Im}(f)$ and their values at given point z:

(a)
$$f(z) = 5z^2 - 12z + 3 + 2i$$
 at $4 - 3i$;

- (b) f(z) = (z 1)(z + 1) at 2*i*;
- 3. Find the value of the derivative of
 - (a) (z-i)/(z+i) at *i*;
 - (b) $(z-2i)^3$ at 5+2i;
 - (c) $i(1-z)^n$ at 0;

(d)
$$z^3/(z-i)^3$$
 at $-i$;

4. (**)

- (a) Prove the following two statements are equivalent
 - i. $\lim_{z\to z_0} f(z) = l;$ ii. $\lim_{z\to z_0} \operatorname{Re}(f(z)) = \operatorname{Re}(l)$ and $\lim_{z\to z_0} \operatorname{Im}(f(z)) = \operatorname{Im}(l);$

- (b) If $\lim_{z\to z_0} f(x)$ exists, show that this limit is unique. (Hint: Proofs by Contradiction, if it is not unique, then...)
- (c) If f(z) is differentiable at z_0 , show that f(z) is continuous at z_0 .
- (d) Show that $f(z) = |z|^2$ is nowhere analytic. (Hint: first show it is only differentiable at z = 0 hence it is nowhere analytic)

2 Cauchy-Riemann Equations. Laplace's Equation

caichy-riemann example harmonic function example

- 1. (*)knowing $u_x = v_y$ and $u_y = -v_x$, prove $u_r = \frac{1}{r}v_\theta$ and $v_r = -\frac{1}{r}u_\theta$
- 2. (*)Are the following functions analytic? Use Cauchy-Riemann Equations.
 - (a) $f(z) = iz\overline{z};$
 - (b) $f(z) = e^x (\cos y i \sin y);$
 - (c) $f(z) = \operatorname{Re}(z^2) i\operatorname{Im}(z^2);$
 - (d) $f(z) = \ln |z| + i \operatorname{Arg}(z)$.
- 3. (**)Are the following functions harmonic? If your answer is yes, find a corresponding analytic function f(z) = u(x, y) + iv(x, y)
 - (a) $u = x^3 + y^3;$

(b)
$$u = xy$$
.

(c)
$$u = e^{-x} \sin 2y$$
.

- 4. $(^{**})$ Determine a and b so that the given function is harmonic and find a harmonic conjugate.
 - (a) $u = e^{-\pi x} \cos ay;$
 - (b) $u = ax^3 + bxy$.
 - (c) $u = \cosh ax \cos y$.

3 Line Integral in the Complex Plane

integration basics

- 1. Find the path and sketch it:
 - (a) $z(t) = (1 + \frac{1}{2}i)t$ $(2 \le t \le 5);$ (b) $z(t) = t + 2it^2$ $(1 \le t \le 2);$ (c) $z(t) = 3 - i + \sqrt{10}e^{-it}$ $(0 \le t \le 2\pi);$ (d) $z(t) = 2 + 4e^{\frac{\pi}{2}it}$ $(0 \le t \le 2).$
- 2. Find a parameter representation and sketch the path:

4 CAUCHY'S INTEGRAL THEOREM

- (a) segment from (-1, 1) to (1, 3);
- (b) upper half of |z 2 + i| = 2 from (4, -1) to (0, -1);
- (c) $x^2 4y^2 = 4$, the branch through (2,0);
- (d) |z + a + bi| = r, clockwise.
- 3. Integrate by the first method or state why it does not apply and use the second method:
 - (a) $\int_C \operatorname{Re} z dz$, C is the shortest path from 1 + i to 3 + 3i; (b) $\int_C e^z dz$, C is the shortest path from πi to $2\pi i$;
 - (c) $\int_{C} z \exp(z^2) dz$, C is from 1 along the axes to i;
 - (d) $\int_C \sec^2 z dz$, any path from $\frac{\pi}{4}$ to $\frac{\pi i}{4}$;
 - (e) $\int_C \operatorname{Im}(z^2) dz$, counterclockwise around the triangle with vertices 0, 1, i.
- 4. Verify $\int_{z_0}^{Z} f(z) dz = -\int_{Z}^{z_0} f(z) dz$ for $f(z) = z^2$, where C is the segment from -1 i to 1 + i.

4 Cauchy's Integral Theorem

- 1. Integrate f(z) counterclockwise around the unit circle. Indicate whether Cauchy's integral theorem applies:
 - (a) $f(z) = \exp(-z^2);$ (b) $f(z) = \frac{1}{2z-1};$ (c) $f(z) = \frac{1}{z^4-1.1};$ (d) f(z) = Imz;
 - $(\mathbf{u}) \ \mathbf{j} \ (\mathbf{z}) = \mathbf{m}\mathbf{z}$
 - (e) $f(z) = \frac{1}{|z|^2}$.
- 2. Evaluate the integral, does Cauchy's theorem apply?
 - (a) ∮_C Ln (1 z) dz, C is the boundary of the parallelogram with vertices ±i, ± (1 + i);
 (b) ∮_C e^z/z dz, C consists of |z| = 2 counterclockwise and |z| = 1 clockwise;
 (c) ∮_C cos z/z dz, C consists of |z| = 1 counterclockwise and |z| = 3 clockwise;
 (d) ∮_C sin z/(z + 2iz) dz, C is |z 4 2i| = 5.5 clockwise.
- 3. If the integral of a function over the unit circle equals 2 and over the circle of radius 3 equals 6, can the function be analytic everywhere in the annulus 1 < |z| < 3?

5 Cauchy's Integral Formula

cauchy iintegral formula

- 1. Integrate $z^2/(z^2-1)$ by Cauchyos formula counterclockwise around the circle.
 - (a) (*) |z+1| = 1
 - (b) (*) |z+i| = 1.4
- 2. Integrate the given function around the unit circle.
 - (a) (*) $(\cos 3z) / (6z)$
 - (b) (*) $z^3/(2z-1)$
- 3. Integrate counterclockwise or as indicated. Show the details.

(a) (*)
$$\oint_C \frac{dz}{z^2 + 4}$$
, $C: 4x^2 + (y - 2)^2 = 4$
(b) (*) $\oint_C \frac{z + 2}{z - 2} dz$, $C: |z - 1| = 2$
(c) (*) $\oint_C \frac{\ln(z + 1)}{z^2 + 1} dz$, $C: |z - i| = 1.4$
(d) (*) $\oint_C \frac{\exp z^2}{z^2 (z - 1 - i)} dz$, C consists of $|z| = 2$ counter-clockwise and $|z| = 1$ clockwise.

6 Derivatives of Analytic Functions

1. Integrate counterclockwise around the unit circle.

(a) (*)
$$\oint_C \frac{\sin z}{z^4} dz$$

(b) (*) $\oint_C \frac{e^z}{z^n} dz$, $n = 1, 2, ...$
(c) (*) $\oint_C \frac{\cosh 2z}{(z - \frac{1}{2})^4} dz$
(d) (*) $\oint_C \frac{\cos 2z}{z^{2n+1}} dz$, $n = 1, 2, ...$

- 2. Integrate. Show the details. Hint. Begin by sketching the contour. Why?
 - (a) (*) $\oint_C \frac{\tan \pi z}{z^2} dz$, C the ellipse $16x^2 + y^2 = 1$ clockwise. (b) (*) $\oint_C \frac{(1+z)\sin z}{(2z-1)^2} dz$, C: |z-i| = 2 counterclockwise. (c) (*) $\oint_C \frac{\ln z}{(z-2)^2} dz$, C: |z-3| = 2 counterclockwise.

6 DERIVATIVES OF ANALYTIC FUNCTIONS

(d) (*)
$$\oint_C \frac{\cosh 4z}{(z-4)^3} dz$$
, *C* consists of $|z| = 6$ counterclockwise and $|z-3| = 2$ clockwise.

(e) (*) $\oint_C \frac{e^{-z} \sin z}{(z-4)^3} dz$, *C* consists of |z| = 5 counterclockwise and $|z-3| = \frac{3}{2}$ clockwise.

(f) (*)
$$\oint_C \frac{e^{3z}}{(4z - \pi i)^3} dz$$
, $C: |z| = 1$ counterclockwise.