Problem Bank 5: Second-Order and Higher Order Linear ODEs

Kreyszig	Topics
Section	
No.s	
2.1	Homogeneous Linear ODEs of Second Order
2.2	Homogeneous Linear ODEs with Constant Coefficients
2.5	Euler-Cauchy Equations
2.6	Existence and Uniqueness of Solutions. Wronskian
2.7	Nonhomogeneous ODEs

Constant coefficient ODEs

- 1. Find the general solutions of the following equations. Show the details of your calculation:
 - (a) y'' 2y' 3y = 0
 - (b) y'' 2y' + 5y = 0
 - (c) y'' + 6y' + 13y = 0
 - (d) $4\frac{d^2x}{dt^2} 20\frac{dx}{dt} + 25x = 0$
- 2. Solve the ODE with the given initial values:

 - (a) y'' 4y' + 3y = 0, y(0) = 6, y'(0) = 10(b) 4y'' + 4y' + y = 0, y(0) = 2, y'(0) = 0
 - (c) y'' 3y' 4y = 0, y(0) = 0, y'(0) = -5
 - (d) y'' + 4y' + 29y = 0, y(0) = 0, y'(0) = 15
 - (e) y'' 4y' + 13y = 0, y(0) = 0, y'(0) = 3
- 3. Find a 2-order ODE, the solutions of which contain $1, e^x, 2e^x$.

Equations with non-constant coefficients 2

Find the general solutions of the following equations. Show the details of your calculation.

- 1. $y'' \frac{y'}{x} + \frac{y}{x^2} = \frac{2}{x}$
- 2. $x^2y'' xy' + 4y = x\sin lnx$
- 3. Prove that $y_1 = e^{x^2}$ and $y_2 = xe^{x^2}$ are solutions of the ODE $y'' 4xy' + (4x^2 2)y = 0$, and write the general solution. Solve it with the initial conditions y(1) = 1 and y'(1) = 0.

- 4. Solve the ODE (2x-1)y'' (2x+1)y' + 2y = 0 in the general case (no initial value), knowing that $y_1(x) = e^x$ is a solution.
- 5. Solve the ODE $\underline{x^2y'' 2xy' + 2y = 0}$ in the general case (no initial value), knowing that $y_1(x) = x$ is a solution.

Nonhomogeneous ODEs 3

- 1. Solve the following ODEs:
 - (a) $y'' + 3y' + 2y = 10e^{-3x}$ (b) $y'' + 5y' + 4y = x^2$

 - (c) $y'' + 4y' + 4y = \cos x$
 - (d) $y'' 5y' + 6y = xe^{2x}$
 - (e) $y'' + y = x \cos 2x$
 - $(f) y'' y = e^x \cos 2x$
- 2. Solve the ODE with the given initial values:

 - (a) $\underline{y'' + 4y = x^2, y(0) = 1, y'(0) = 0}$ (b) $\underline{y'' 2y' = 6e^{2x} 4e^{-2x}, y(0) = -1, y'(0) = 6}$
 - (c) $y'' + 2y' + 0.75\overline{y} = 2\cos x 0.25\sin x + 0.09x, y(0) = 2.78, y'(0) = -0.43$

Higher order ODE

- 1. $\underline{y^{(4)} 2y^{(3)} + 5y'' = 0}$
- $2. \ y^{(4)} + y = 0$
- 3. $y''' = e^{2x} \cos x$
- 4. y''' + 3y'' + 3y' + y = 0