Problem Bank 6: Fourier Analysis

Kreyszig	Topics	Slide No.s
Section		
No.s		
11.1	Fourier Series	N/A
11.2	Arbitrary Period. Even and Odd Functions. Half-Range Ex-	N/A
	pansions	N/A
11.3	Forced Oscillations	

1 Fourier Series

- 1. The fundamental period is the smallest positive period. Find it for
 - (a) $\cos x$, $\sin x$, $\cos 2x$, $\sin 2x$, $\cos \pi x$, $\sin \pi x$, $\cos 2\pi x$, $\sin 2\pi x$
 - (b) $\cos nx$, $\sin nx$, $\cos \frac{2\pi x}{k}$, $\sin \frac{2\pi x}{k}$, $\cos \frac{2\pi nx}{k}$, $\sin \frac{2\pi nx}{k}$;
 - (c) If f(x) has period p, show that f(ax), $a \neq 0$, and f(x/b), $b \neq 0$ are periodic functions of x of periods p/a and bp, respectively. Give examples;
- 2. Sketch or graph f(x) which for $-\pi < x < \pi$ is given as follows:

(a)
$$f(x) = |x|;$$

(b) $f(x) = \begin{cases} x, & \text{if } -\pi < x < 0\\ \pi - x, & \text{if } 0 < x < \pi \end{cases};$
(c) $f(x) = \begin{cases} -\cos^2 x, & \text{if } -\pi < x < 0\\ \cos^2 x, & \text{if } 0 < x < \pi \end{cases};$

- 3. Find the Fourier series of the given function f(x), which is assumed to have the period 2π . Show the details of your work.
 - (a) f(x) in Problem 2(a)
 - (b) f(x) in Problem 2(b)

(c)
$$f(x) = x^2$$
 $(-\pi < x < \pi);$
(d) $f(x) = \begin{cases} 0, & \text{if } -\pi < x < -\pi/2 \\ x, & \text{if } -\pi/2 \le x < \pi/2 \\ 0, & \text{if } \pi/2 \le x < \pi \end{cases}$

2 Arbitrary Period. Even and Odd Functions. Half-Range Expansions

- 1. Are the following functions even or odd or neither even nor odd?
 - (a) e^x , $e^{-|x|}$. $x^3 \cos nx$, $x^2 \tan \pi x$, $\sinh x \cosh x$;
 - (b) $\sin^2 x$, $\sin(x^2)$, $\ln x$, $x/(x^2+1)$, $x \cot x$;
 - (c) (*) Sum and product of odd functions;
 - (d) (*) Product of an odd times an even function.
- 2. Is the given function even or odd or neither even nor odd? Find its Fourier series (period p = 2L). Show details of your work.

(a)
$$f(x) = \begin{cases} -x, & \text{if } -1 < x < 0\\ x, & \text{if } 0 < x < 1 \end{cases}$$
;
(b) $f(x) = x^2 \quad (-1 < x < 1), \quad p = 2;$
(c) $f(x) = \cos \pi x \quad (-1/2 < x < 1/2), \quad p = 1;$
(d) $f(x) = x|x| \quad (-1 < x < 1), \quad p = 2;$
(e) $f(x) = \begin{cases} x+1, & \text{if } -1 < x < 0\\ -x+1, & \text{if } 0 < x < 1 \end{cases}$
(f) (f) Using Deally and (h) and (h) = 1/4 + 1/4 + 1/6 + 1/6 + 1/4 + 1/6 + 1/4 + 1/6 + 1/4 + 1/6 + 1/4 + 1/6 + 1/4 + 1/6 + 1/4 + 1/6 + 1/4 + 1/6 + 1/4 + 1/6 + 1/4 + 1/6 + 1/4 + 1/6 + 1/4 + 1/6 + 1/4 + 1/6 + 1/6 + 1/4 + 1/6 + 1/4 + 1/6 + 1/6 + 1/4 + 1/6 + 1

(f) (*)Using Problem 2(b), show that $1 + 1/4 + 1/9 + 1/16 + \cdots = \pi^2/6$

;

3. Find (a) the Fourier cosine series, (b) the Fourier sine series. Sketch f(x) and its two periodic extensions. Show the detail.

(a)
$$f(x) = \begin{cases} 0, & \text{if } 0 < x < 2\\ 1, & \text{if } 2 \le x < 4 \end{cases}$$

(b) $f(x) = \pi - x \quad (0 < x < \pi);$
(c) $f(x) = \begin{cases} x, & \text{if } 0 < x < \pi/2\\ \pi/2, & \text{if } \pi/2 \le x < \pi \end{cases}$
(d) $f(x) = x \quad (0 < x < L)$

3 Forced Oscillations

- 1. Find a general solution of the ODE $y'' + \omega^2 y = r(t)$ with r(t) as given. Show the details of your work.
 - (a) $r(t) = \sin \alpha t + \sin \beta t$, $\omega^2 \neq \alpha^2, \beta^2$;
 - (b) $r(t) = \sin t, \ \omega = 0.5, 0.9, 1.1, 1.5, 10;$
 - (c) $r(t) = \pi/4 |\sin t|$, if $0 < t < 2\pi$ and $r(t+2\pi) = r(t)$, $|\omega| \neq 0, 2, 4, \cdots$. (d) $r(t) = \begin{cases} -1, & \text{if } -\pi < t < 0\\ 1, & \text{if } 0 < t < \pi \end{cases}$ and $|\omega| \neq 1, 3, 5, \cdots$;
- 2. Find the steady-state oscillations of y'' + cy' + y = r(t) with c > 0 and r(t) as given. Note that the spring constant is k = 1. Show the details.

(a)
$$r(t) = \begin{cases} -1, & \text{if } -\pi < t < 0\\ 1, & \text{if } 0 < t < \pi \end{cases}$$
 and $r(t+2\pi) = r(t);$
(b) $r(t) = \begin{cases} t, & \text{if } -\pi/2 < t < \pi/2\\ \pi - t, & \text{if } \pi/2 < t < 3\pi/2 \end{cases}$ and $r(t+2\pi) = r(t)$

3. Find the steady-state current I(t) in the RLC-circuit in Fig. 275, where $R = 10\Omega$, L = 1H, $C = 10^{-1}F$ and with E(t) V as follows and periodic with period 2π . Graph or sketch the first four partial sums. Note that the coefficients of the solution decrease rapidly. Hint. Remember that the ODE contains E'(t), not E(t), cf. Sec. 2.9.

(a)
$$E(t) = \begin{cases} -50t^2, & \text{if } -\pi < t < 0\\ 50t^2, & \text{if } 0 < t < \pi \end{cases}$$
;
(b) $E(t) = \begin{cases} 100(t-t^2), & \text{if } -\pi < t < 0\\ 100(t+t^2), & \text{if } 0 < t < \pi \end{cases}$.

