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1 Introduction

Consider two billionaires eating dinner at a very expensive restaurant. When they finish their meal, the

waiter delivers a very expensive bill and expects a large tip. The billionaires begin to quibble over who

should pay, and they resolve that the richer one should pay the bill and the other cover the tip. Assume

that neither billionaire wishes to reveal his true net worth to the other, for fear that the other may reveal his

holdings to the IRS. Can the billionaires accurately compare their true net worths to discover who is richer,

and more importantly, who should pay the bill?

Andrew Yao proposed a very similar problem in 1982 [1] (back when a million dollars was a lot of money),

opening up a vast and fruitful field of research known as secure computation. Consider a situation in which

two mutually distrustful parties wish to compute a joint function on their inputs, but do not wish to involve

or do not have the luxury of knowing a trusted third party. Secure computation allows distrustful parties

to jointly compute arbitrary functions while preventing any player or onlooker from learning more about

another player’s input than what she could deduce from her own input and output.

This survey paper will review the garbled circuit scheme for secure computation originally proposed by Yao

and give several extended constructions that improve its efficiency. Where we have covered a primitive or

security notion in class, this document will elide the definition and generally treat the primitive as a black

box. Where new notions or constructions are necessary for understanding the garbled circuit construction,

they will be given, although full proofs will usually not be given for the sake of space.

2 Yao’s Garbled Circuits

The garbled circuit protocol is an interactive algorithm between two players, whom we will name Gen and

Eval. Gen and Eval will jointly compute a function f(x, y) = (fx(x, y), fy(x, y)), where Gen’s input and

output are given as (x, fx(x, y)) and Eval’s input and output are given as (y, fy(x, y)). We will assume for

the sake of simplicity that fx(x, y) = fy(x, y), i.e. Gen and Eval receive the same output from the protocol,

and denote it simply as f(x, y). For the sake of simplicity, also assume that x, y, f(x, y) ∈ {0, 1}n for some

integer n.

Let (G(1n), Ek(m) = c,Dk(c) = m) be a private key encryption scheme such that G(1n) generates an en-

cryption key k, Ek(m) is an encryption algorithm using key k on message m that produces cipher text c,

and D is a decryption algorithm that uses k to decrypt c and retrieve m.

Let OT be an oblivious transfer protocol between two players P1 and P2, where P1’s input is (m0,m1) and

P2’s input is b ∈ {0, 1}. P1’s output from the protocol is ⊥, and P2’s output is (mb).

Yao’s Garbled Circuit scheme is an interactive protocol in which Gen will generate a garbled circuit and

Eval will evaluate it to discover the outputs. We will assume that Eval honestly relays the output to Gen

when it has completed the output. This assumption can be removed for the final construction.

2.1 A Single Gate

We will show how to garble a single gate from the binary circuit which Gen and Eval compute, drawing

heavily from the explanation given by Lindell and Pinkas in [2]. The construction of a full circuit follows

inductively from the guarantees provided by the encryption of a single gate. Begin by considering, for

example, an AND gate:
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x y z

0 0 0

0 1 0

1 0 0

1 1 1

Table 1: A Standard AND Gate

x y z

0 0 0

0 1 1

1 0 1

1 1 0

Table 2: A Standard XOR Gate

Garbling the gate will require obscuring the inputs to each gate and encrypting the outputs such that knowing

the output of a gate betrays no information about its true value. We will replace the inputs and the outputs

with keys that are mapped to their true values, and the mapping will be kept secret. Begin by generating

six encryption keys by repeatedly invoking G(1n) and name them k0x, k
1
x, k

0
y, k

1
y, k

0
z , k

1
z . We replace the above

standard gate with a new ”garbled” gate and then define a new function for evaluating its output.

x y z

k0x k0y k0z
k0x k1y k0z
k1x k0y k0z
k1x k1y k1z

Table 3: A Garbled AND Gate

x y z

k0x k0y k0z
k0x k1y k1z
k1x k0y k1z
k1x k1y k0z

Table 4: A Garbled XOR Gate

Notice the convention that the subscript of k maps it to a specific input variable or wire, and the superscript

describes the value of that input from the table above, or equivalently the semantic value of the wire. We

now define a new function for evaluating a gate. Whereas for a standard gate, we define the function

g(x, y) : {0, 1} × {0, 1} → {0, 1}

we now define the new function

garbledgate(kαx , k
β
y ) : kαz × kβy → kg(α,β)z

for α, β ∈ {0, 1}, and g(α, β) defined by the truth table of the standard gate it computes. A single arbitrary

garbled row is defined by

cx,y = Ekαx (Ekβy (kg(α,β)z ))

Or, more verbosely, a full garbled gate table is completely defined by the values

c0,0 = Ek0x(Ek0y (kg(0,0)z ))

c0,1 = Ek0x(Ek1y (kg(0,1)z ))

c1,0 = Ek1x(Ek0y (kg(1,0)z ))

c1,1 = Ek1x(Ek1y (kg(1,1)z ))

Given c, the function garbledgate is evaluated by decrypting c using both of the input keys to discover the

output key.

2.2 Circuits Composed Of Gates

To garble a complete circuit, Gen will compute all of the cipher texts described in the construction above

and send them to Eval for decryption using the input keys. Gen composes gates to construct a circuit by

using the output key (denotes as k2 above) of one gate as the input key to the next gate. Gates with fan-out

of more than 1 will have their output keys used as input to multiple gates.

2



There are 2 glaring issues with the above scheme. First, if Eval knows all of the keys k, then Eval can

decrypt every possible output key for every gate in the circuit. Second, Eval can learn the semantic value

hidden by each key simply by the order of the cipher texts it receives for each gate.

To handle the first issue, we maintain the invariant that Eval knows only two of the input keys, kα0 and

kβ1 for each gate that it attempts to decrypt. If Eval attempts to decrypt a c for which she does not have

both keys, she will receive ⊥. Second, Gen can obscure which key Eval decrypts by randomly permuting

the cipher texts for a gate before sending them to Eval. This hides the values of α and β from Eval, but it

forces Eval to attempt to decrypt every cipher text. The scheme for both of these issues will be revisited

and improved in section 4.

2.3 Input Privacy

In order to evaluate the circuit, Eval must learn the keys that correspond to both Gen’s inputs and its

own inputs. Gen trivially sends the keys for its inputs to Eval, sending kαxi for the value α of every one

of its inputs xi, revealing nothing about xi = α. To learn the keys kβyi for each of its own inputs yi while

preventing Gen from learning Eval’s inputs, Eval and Gen perform an OT where Gen’s inputs are (k0yi , k
1
yi)

and Eval’s input is β. All of the OTs for Eval’s inputs can be performed in parallel.

2.4 Correctness

A formal proof of correctness for this scheme is deferred to [2], but a couple of notions for correctness are

important to give here. First, Eval should decrypt a cipher text for which she has both input keys with

negligible probability of error. Second, Eval’s probability of decrypting a cipher text for which she does not

have both necessary keys should be negligible. The probabilities of error will be dependent on the encryption

scheme chosen, but the probability of error can always be reduced thanks to a result by Dwork, Naor, and

Reingold [3].

2.5 Security

Rather than give a formal proof of security, we give a couple of notions of security that are important to this

scheme.

Eval’s input privacy is intuitively reduced to the security of the OT , since Gen’s view of the protocol is only

of the OT messages passed.

Gen’s privacy is proven by constructing a simulator that can generate the view of Eval. In this case, the

simulator will not be able to correctly garble a circuit to evaluate f(x, y), so it generates a “fake” garbled

circuit that always evaluates to f(x, y) which must be indistinguishable from a real garbled circuit in an

actual execution of the protocol.

3 Free XOR

It is not necessary that all gate garblings be generated independently. In [4], Koleshnikov and Schneider

showed that garbled XOR gates may in fact be completely dependent on their input wires, eliminating the

necessity to transmit any information between Gen and Eval for their computation. In addition, the con-

struction is incredibly cheap to compute, requiring only a single XOR operation per gate.

Begin by revisiting the construction of a garbled gate in Table 4. Notice that rather than generating k0z
and k1z using G(1n), it is possible to make each kz completely dependent on the input keys. Assume that

there exists some R ∈ {0, 1}n, where n is the length of each key k. Now, let all k0z = k0x ⊕ k0y and, for all
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i ∈ {x, y, z}, let k1i = k0i ⊕R. We can easily see that we have a new garbled XOR gate in Table 5.

x y z

k0x k0y k0z = k00 ⊕ k0y
k0x k0y ⊕R k1z = k0x ⊕ k0y ⊕R

k0x ⊕R k0y k1z = k0x ⊕ k0y ⊕R
k0x ⊕R k0y ⊕R k0z = k0x ⊕ k0y

Table 5: A Garbled Free XOR Gate

And now, in order for Eval to evaluate an XOR gate, she needs only to XOR her two input keys. R must

be chosen once by Gen and held globally to be used for all gates, and Gen must keep R hidden from Eval,

lest Eval learn extra information about the circuit. A complete argument for security is deferred to [4].

4 Point and Permute

We digress slightly from giving optimizations for gates in order to introduce new notation that will resolve

some security concerns and reduce the decryption burden on Eval. We identified in section 2.2 that the

truth table for a garbled circuit must be randomly permuted to prevent Eval from learning the semantics

of the gate by the order of the cipher texts. We also noted in section 2.4 that Eval should have negligible

probability of correctly decrypting a cipher text for which she does not have the keys, which is a concern

because Eval needed to decrypt all possible cipher texts. We now give a construction that allows Eval to

only decrypt one cipher text per gate.

Consider a wire wi within the circuit to be composed of (kαi , p), where p is a random permutation bit and

k is the key that the wire holds, as defined before. When Gen encrypts a wire, Gen appends p to the end

of k. When Eval decrypts the wire to learn k, she also learns p, and with two values of p from two input

wires she can deterministically select the value to decrypt from the garbled gate they enter. She does this

by simply selecting the 2 ∗ p0 + p1 entry in the garbled table to decrypt. This scheme is compatible with

Free XOR above by defining every p1z for k1z to be p0z ⊕ 1. When computing the new wires for a gate, we

have that for wire i, w0
z = (k0x ⊕ k0y, p0x ⊕ p0y) and w1

z = (k0x ⊕ k0y ⊕R, p0x ⊕ p0y ⊕ 1).

Intuitively, because the permutation bits are chosen independently of the keys, this permutation of garbled

gate tables makes each table look randomly permuted, and in fact even gates of the same type are permuted

independently of each other.

5 Garbled Row Reduction

5.1 GRR3

While the Free XOR trick allows us to eliminate all communication for XOR gates and evaluate them using a

single XOR, it does not help us reduce the computation or communication necessary for other gates. Garbled

Row Reduction (GRR3), suggested by [5] permits us to reduce the amount of information communicated

and stored for every non-XOR garbled gate by one entry, transmitting only 3 table entries (hence the name

GRR3). The intuition for this optimization is simple. Rather than generating the key for both output values

(k0z and k1z) from G(1n), we can directly determine the value of one kz from the two input keys that are

used to generate it, by computing k = Ekx(Eky (0n)). We define this k to be the first row sent by Gen for

the gate, so Gen no longer needs to send that row. The other kz is defined as determined by the Free XOR

method.
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We note here that in most current constructions, the double encryption over a key is computed as

Eskx,ky (m) = H(kx||s)⊕H(ky||s)⊕m

where H(k||s) is some hash function keyed by k on input s, often implemented as SHA256 (originally SHA1

in FairPlay [6]), and s is some string completely unique to each invocation of the encryption. In some con-

structions, s is given as Gid||c0||c1, where Gid is the gate’s number, also commonly referred to as a label,

and the c values are the ”external” values of the wire, given by the permutation bits concatenated onto the

end of them. Here, rather than compute the encryption over some message kz (where kz takes the place of

m above), kz is simply defined to be the mask computed by XORing hashes of the input keys. In addition,

because this key is defined to be the first row in the table, both c values are 0. (The value c for this output

wire is also implicitly defined by this operation.)

Intuitively, this row reduction should maintain privacy because it reveals no new information to Eval about

the keys. If the key in the first position of the table were defined to be the zero string, then Eval could

always recover that row. However, Eval will only be able to compute the first row in this scheme if Eval

has both input keys to that row of the gate, since she must use them to encrypt the zero string. A complete

proof of security is deferred to [5].

5.2 GRR2

It is also possible to reduce the communication for a gate even further, although at the expense of no longer

have a scheme compatible with Free XOR. This may be desirable when the number of XOR gates in a circuit

is small compared to the total number of gates.

The intuition behind the scheme is that we can use a trick inspired by Shamir secret sharing to only send

two values per gate, and use polynomial interpolation by Gen and Eval to identify and discover the proper

output keys. Since we are not bounded by the Free XOR model, both output keys kz can be chosen inde-

pendently. The scheme for reducing the garbling of a truth table is dependent on whether the gate being

garbled is even, i.e. both output keys appear twice in the truth table, or odd, i.e. one output key appears

once and the other thrice.

Even Gates

An even gate is either an XOR gate or an XNOR gate. Without loss of generality, assume that the first row

of the garbled table and the fourth row both encrypt k0z , and the second and third rows encrypt k1z . Gen

computes all four cipher texts of the truth table, and arranges them appropriately in his own private table,

which is given in Table 4. We briefly abuse notation and consider the four values c0z, c
1
z, c

2
z, c

3
z, where c is a

cipher text, z denotes that it is used for output, and the superscript now identifies a row in the table, given

in order. (We note that these will be permuted, but disregard that piece temporarily for the sake of clarity.)

Gen treats each cipher text c as a point in the finite field F2n , where n is the length of the cipher text,

and constructs two linear polynomials as follows. The polynomial P (X) is defined by setting c0 = P (1)

and c3 = P (4), and interpolates P (0) as the cipher text containing the key for k0z . The polynomial Q(X) is

defined by setting c1 = P (2) and c2 = P (3), and interpolates Q(0) as the cipher text containing the key for

k1z . Gen sends P (5) and Q(5) to Eval along with 4 bits that define the permutation used to randomly order

the two keys he sent.

Eval computes a point on the polynomial using the private key encryption scheme on two keys and encrypt-

ing the message s = Gid||c0||c1. She uses the permutation bits of the input wires to determine which point

she has computed and then interpolates either P (0) or Q(0) using the proper one of the two points that Gen

sent her to discover the output key. This gives the intuition of the protocol; for a complete construction that

accounts for how Eval uses the permutation bits (which themselves must be masked), refer to [5].
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Odd Gates

Assume without loss of generality that Gen is garbling an OR gate (an AND gate is constructed analogously,

as the polynomials are still defined but the values of kz are switched). Gen computes the four cipher texts

c as described in the previous section, defining the polynomial P (X) with the points P (2) = c1, P (3) = c2,

P (4) = c3. k1z is defined to be P (0). Gen also evaluates c5 = P (5) and c6 = P (6). Then Gen creates a

second polynomial Q(X) by letting Q(5) = c5, Q(6) = c6, and Q(1) = c0. Gen defines k0z to be Q(0).

Gen sends c5 and c6 to Eval, who uses the keys she has to determine if she is interpolating P or Q, and

then generates the point determined by her input keys and permutation bits to interpolate the polynomial

at 0, retrieving the output key. We again defer the complete construction to [5], which includes specifics

about how the cipher texts are permuted. All of the permutation schemes, however, follow directly from the

construction given in section 4.

6 Conclusion

We have given a generic construction of secure computation by garbled circuits, along with several optimiza-

tions for improving the protocol. Although the new techniques FleXOR [7] and HalfGates [8] are not covered

here (I did not have time read them fully or space to describe them here, since the rest of these papers took

longer than expected), this survey gives enough intuition to lay the foundation for them, and it brings the

advances in garbled circuits constructions near to the state of the art.
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