Garbled Circuits: An Intro

Ben Terner CS6501 - Cryptography

Yao's Garbled Circuits

Briefly, Definitions

Briefly, Definitions

Garbled Gates

Garbled Gates

$$garbledgate(k_x^{\alpha}, k_y^{\beta}): k_z^{\alpha} \times k_y^{\beta} \to k_z^{g(\alpha, \beta)}$$

$$c_{x,y} = E_{k_x^{\alpha}}(E_{k_y^{\beta}}(k_z^{g(\alpha,\beta)}))$$

Garbled Gates

$$c_{0,0} = E_{k_x^0}(E_{k_y^0}(k_z^{g(0,0)}))$$

$$c_{0,1} = E_{k_x^0}(E_{k_y^1}(k_z^{g(0,1)}))$$

$$c_{1,0} = E_{k_x^1}(E_{k_y^0}(k_z^{g(1,0)}))$$

$$c_{1,1} = E_{k_x^1}(E_{k_y^1}(k_z^{g(1,1)}))$$

Point and Permute

$$c_{0,0} = E_{k_x^0}(E_{k_y^0}(k_z^{g(0,0)}))$$

$$c_{0,1} = E_{k_x^0}(E_{k_y^1}(k_z^{g(0,1)}))$$

$$c_{1,0} = E_{k_x^1}(E_{k_y^0}(k_z^{g(1,0)}))$$

$$c_{1,1} = E_{k_x^1}(E_{k_y^1}(k_z^{g(1,1)}))$$

Point and Permute

$$c_{-} = E_{k_{x}}(E_{k_{y}}(k_{z}^{g(?,?)}))$$

$$c_{-} = E_{k_{x}}(E_{k_{y}}(k_{z}^{g(?,?)}))$$

$$c_{-} = E_{k_{x}}(E_{k_{y}}(k_{z}^{g(?,?)}))$$

$$c_{-} = E_{k_{x}}(E_{k_{y}}(k_{z}^{g(?,?)}))$$

Point and Permute

p is a *random* permutation bit b_i is the semantic value of wire *i* $p_i = \pi_i XOR b_i$ $w_i = K_z || p_i$

 $C = E_{k1}(E_{k2}(w_i))$

(p1,p2) from input wires identify which table entry Eval should decrypt *and* how Gen should permute

Free XOR

For all *i* in {x,y,z}: $K_i^1 = K_i^0 XOR R$

х	У	Z
k_x^0	k_y^0	$k_z^0 = k_0^0 \oplus k_y^0$
k_x^0	$k_{y}^{0} \oplus R$	$k_z^1 = k_x^0 \oplus k_y^0 \oplus R$
$k^0_x\oplus R$	k_y^0	$\begin{split} k_z^1 &= k_x^0 \oplus k_y^0 \oplus R \\ k_z^1 &= k_x^0 \oplus k_y^0 \oplus R \end{split}$
$k_x^0\oplus R$	$k_y^0 \stackrel{{}_\circ}{\oplus} R$	$k^0_z = k^0_x \oplus k^0_y$

Let s be a unique identifier: $s = Gid || p_0 || p_1$ Let ciphertexts be $C = H(k_x | | s) XOR H(k_v | | s) XOR K_z$ For the first gate $(p_0=p_1=0)$, define $C = K_7 =$ $H(k_x | | s) XOR H(k_v | | s)$

- Consider each key to be a point in GF(2ⁿ)
- Idea:
 - Gen constructs polynomials using input, output keys
 - Gen sets output keys to be points on a curve
 - Gen sends info (2 ciphertexts) about the polynomial to Eval
 - Eval uses her input keys and the ciphertexts to interpolate the polynomial

Even Gates

Gen computes c1,c2,c3,c4 cipher texts as before $c = H(k_x || s) XOR H(k_y || s) XOR k_z$

$$c_1 = P(1)$$
 $c_4 = P(4)$
 $c_2 = Q(2)$ $c_3 = Q(3)$

 $k_z^0 = P(0)$ $k_z^1 = Q(0)$

Gen sends P(5), Q(5) to Eval Eval interpolates P(0) or Q(0) using one point sent by Gen and one point she derives from input keys

Odd Gates

Gen computes c1,c2,c3,c4 cipher texts as before $c = H(k_x || s) XOR H(k_y || s) XOR k_z$

$$c_1 = Q(1)$$
 $c_2 = P(2)$
 $c_4 = P(4)$ $c_4 = P(4)$

Gen also calculates $c_5 = Q(5) = P(5)$, $c_6 = Q(6) = P(6)$

 $k_z^0 = Q(0)$ $k_z^1 = P(0)$

Gen sends c_5 , c_6 to Eval Eval interpolates P(0) or Q(0) using two points sent by Gen and one point she derives from input keys