
On Encrypted Functions and Verifiable Computing

Hunter Leath
University of Virginia
jhl4qf@virginia.edu

Abstract
Much like exploring the notion of zero-knowledge proofs through
extensions of the typical notions of “proof,” we can take one step
further into the world of verifiable computation by extending our
notion of proof again. This paper will discuss recent advances
towards verifiable delegation of computation while also exploring
the relevant intersection with secure function evaluation.

Verifiable computation represents the notion of “outsourcing”
computation to more powerful workers and ensuring that the results
returned are correct despite the worker’s actions. On the other hand,
secure function evaluation is the attempt to prevent a worker from
learning anything about the function that it is computing.

With a combination of these two approaches, we can create
a system that allows us to “outsource” proprietary code to an
untrusted worker while remaining confident that the proprietary
algorithms will remain secure and the results of the computation
are correct.

1. Introduction
With the rise in popularity of mobile devices over the past decade,
it has become clear that people enjoy devices that are small in
size, long in battery life, and powerful. However, it is immediately
obvious that a single device cannot possible incorporate all of
these features because of their interplay. For that reason, hardware
manufacturers and consumers have grown accustomed to using
mobile devices that are unable to compete with desktops in terms
of power. Developers for these devices must then make trade offs
between features and available processing power (assuming they
desire a minimal impact on battery life).

This situation has become less important with the advances of
the “cloud”. Developers for mobile devices are increasingly mov-
ing computation-heavy algorithms onto servers to lighten the load
on the individual mobile client. This model makes the necessary
assumption that the servers are controlled by the developer and not
malicious; however, as can be seen from the constant flurry of news
articles about high-profile companies being “hacked”, this is not a
realistic assumption in today’s world.

Instead, we can turn to cryptography to provide these assur-
ances. Verifiable computing is a topic in security with a renewed
vigor due in part to Gentry’s recent contributions towards Fully Ho-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
UVa SIGCRYPT, Dec 15, 2014, Charlottesville, VA, USA.
Copyright c© 2014 ACM 978-1-nnnn-nnnn-03/14/12. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1. A typical content producing website with advertising.

momorphic Encryption [G09]. It allows the secure “outsourcing” of
computation to untrusted workers while ensuring that results of the
computation are correct.

In this paper, we will survey recent advances in the field of
verifiable computation as well as the assumptions they are founded
on, attempt to integrate secure function evaluation as a metric of
these schemes in order to protect proprietary algorithms from the
untrusted worker, and present a unique usage pattern for these
schemes to evaluate their practicality.

2. Overview
This paper will be organized by the topicality of the assumptions
that verifiable computing schemes utilize. We will begin with re-
cent advances in primitives, then build the larger schemes that uti-
lize theses new primitives. We will also discuss the runtime cost of
each scheme.

2.1 Motivating Example
We will begin first, however, with the discussion of the motivating
example. This will help in comparing the runtime of current algo-
rithms with the “ideal” to gauge the distance to practicality.

A typical website that produces content (as opposed to selling
a service) is often seen with advertisements surrounding the main
text of the webpage like the New York Times in Figure 1. The
interaction between advertisements and journalistic integrity has
been the subject of much controversy over the years. With the
advent of impression-based advertising on the internet, the desire
for journalists to bend headlines to be attention-grabbing or “click-
bait” has only increased.

Using verifiable computation and secure function evaluation,
we can introduce a new model of monetization for content pro-
ducing websites. In the new model, when a user visits the website,
a small amount of Javascript is loaded onto the client to fetch jobs
from a central server. The users computer is then designated as the

q p z Computation
k0q k0p k00z Enck0

q
(Enck0

p
(k00z))

k0q k1p k01z Enck0
q
(Enck1

p
(k01z))

k1q k0p k10z Enck1
q
(Enck0

p
(k10z))

k1q k1p k11z Enck1
q
(Enck1

p
(k11z))

Table 1. A simplified example of Yao’s Garbled Circuits on a
binary function taking two inputs (q and p) and returning a single
output (z).

“worker” and completes computational jobs from the central queue
so long as the user does not navigate away from the site.

The content producing website is then paid by organizations
who wish to run computationally-intensive applications on users
machines in a distributed manner. Rather than being paid based
merely on impressions, the site is rewarded for the amount of time
users spend consuming their content. This aligns the goals of the
benefactors who wish to see their computations completed and the
content producers who wish for their content to be consumed.

Of course, the missing piece of the scheme is the assurance that
the distributed workers do not cheat or attempt to change the re-
sults of the computation. Verifiable computation is able to fill this
hole nicely. Additionally, the utilization of secure function evalua-
tion could convince companies that proprietary algorithms run on
these platforms would not be leaked to consumers or competing
organizations.

If a practical scheme supporting both verifiable computation
and secure function evaluation existed, then the construction of
such a monetization strategy could quickly follow. The rest of this
paper will be focused on examining recent progress towards these
goals in the context of this web-based usage.

3. Definitions
In this section, we will cover the definitions of primitives utilized
by the full verfiable computation schemes.

Garbled Circuits. One of the first strong primitives utilized for
verifiable computation is the “Garbled Circuit” pioneered by Yao
in the 1980s. The Garbled Circuit was a generalization of previous
specific secure computation protocols. With Garbled Circuits, any
computation that could be represented as a binary circuit could be
computed securely by multiple parties (keeping personal inputs pri-
vate). One party would serve as the circuit constructor and another
as the evaluator. For each gate in the circuit, the constructor picks
random numbers representing the state of the input wires and the
output wire. He then computes the double encryption of the out-
put wire random numbers under the keys of the random numbers
corresponding to the input wires. When the evaluator eventually
computes the output of the gate, he will only be able to decrypt the
answer corresponding to the values of the input wires he actually
has. An example of a “Garbled Gate” can be seen in Table 1.

Fully Homomorphic Encryption. Up until recently, “Fully Ho-
momorphic Encryption” (FHE) was a primitive often wished for by
cryptographers while remaining out of reach without the promise
of ever being constructed. In 2009, Gentry [G09] was able to fulfill
hopes by constructing the first FHE scheme based on ideal lattices.

As defined by him, a fully homomorphic encryption scheme E
has all of the functions as a usual asymmetric encryption primitive
(KeyGen, Encrypt, Decrypt) with the addition of the function
Evaluate. Such that

EvaluateE(pk, C, ψ0, ...ψn) = EncryptE(pk, C(π0, ...πn))

where ψi = EncryptE(pk, πi).
Therefore, anyone with the public key is able to do arbitrary

computation over the ciphertext and receive an encrypted answer. It
should be clear that for this reason, it is impossible to achieve CCA
security of a Fully Homomorphic Encryption scheme. However, in
general, Gentry’s scheme is able to provide semantic security and
is very useful for verfiable computation.

Attribute Based Encryption. Attribute Based Encryption (ABE)
as refined by Goyal et. al. [G06] is an encryption scheme where
the ciphertext is based on a public attribute x such that ψ =
Encpk(π;x). Using the master secret key (msk) created with Key-
Gen, the encryptor can create a functional secret key skf that will
allow a user to reconstruct the plaintext if f(x) = 1.

Often one talks about Attribute Based Encryption with “collusion-
resistance” - a property implying that many users with different
secret keys cannot collude (by combining their secret keys) to get
access to the plaintext.

Functional Encryption. Functional Encryption (FE) as formal-
ized in [BSW11] is able to generalize the Attribute Based Encryp-
tion scheme by changing how the secret keys interact with the ci-
phertext. In FE, there is no public attribute x encoded into the ci-
phertext. Instead, when secret keys skf are created to give users
“access” to a function f , the only property of the plaintext that
users can compute is f(π).

Up until recently, results in Functional Encryption were only
able to calculate the inner product of messages. However, recent
advances by Garg et. al. [G13a] have given candidate encryption
schemes that support arbitrary computations.

Witness Encryption. In the same year, Garg et. al. [G13b] pro-
posed the concept of Witness Encryption (WE). A WE scheme is
defined on an NP language L. The Encrypt function takes a mem-
ber x of the language L as one of the parameters. To decrypt the
ciphertext, one must provide the witness w that proves x’s mem-
bership in L. If x /∈ L, then no poly-time adversary can decrypt the
ciphertext with non-negligible probability.

Oblivious Turing Machine. The standard Turing Machine has
been the basis for computational complexity for most of modern
history. During that time, it is natural for slightly modified versions
of the Turing Machine to be proposed. One such modification,
useful for our purposes here, is the idea of an Oblivious Turing
Machine. For these machines, the movement of the tape head is
exactly the same for all input of the same length. The advantage
conferred from this model is that an adversary watching the Turing
Machine learns nothing about the input from the movement of its
heads.

In the late 1970s, Pippenger and Fischer created the most effi-
cient known reduction to Oblivious Turing Machines. They showed
that any computation run on a Turing Machine running in O(n)
time can be made oblivious and run in O(n logn) time.

4. Verifiable Computation
Armed with the background knowledge of important primitives for
creating Verifiable Computation, we are ready to analyze recent
work in the area.

Verifiable Computation is a protocol between two parties: the
delegator and the worker. The delegator has a difficult computa-
tion F that he wants outsourced to the worker, but doesn’t trust
the worker to perform the calculation correctly. A verifiable com-
putation scheme gives the assurance that the delegator will not be
fooled by an incorrect result with a non-negligible probability.

4.1 Circuit Based Approaches
Since most approaches to Verifiable Computation utilize a variant
of Yao’s Garbled Circuits, they implicitly model computation as
Boolean Circuits. For all of the works presented below, algorithms
must be compiled into Boolean Circuits before evaluation.

Yao’s Circuits. The first observation for utilizing Yao’s Circuits
for a Verifiable computation is changing the protocol from two-
parties calculating a function to just one-party. In this simple modi-
fication, the delegator prepares the circuit for computation, and the
worker actually evaluates the circuit. Given that the random wire
values are drawn from a large enough space, it is infeasible for the
worker to “guess” an incorrect wire value that he did not decrypt.

The problem with this approach lies in the runtime cost. Yao’s
circuits are only secure for a single evaluation, otherwise an adver-
sary can learn a portion of the random wire values. Since Garbling
the circuit for each input is very slow, we hope that a more advanced
scheme will give a faster running time for subsequent evaluations.

Verifiable Computation with FHE. One of the first papers to take
advantage of the renewed focus on FHE utilizes the construct to
create Verifiable Computation [GGP10]. The motivating factor be-
hind the work was from looking at the traditional properties that
FHE was unable to provide. Namely, the FHE scheme proposed by
Gentry was unable to ensure that the computations undertaken us-
ing Evaluate were correct. An adversary could return a malformed
ciphertext that did not contain the result of a computation. This
work added these features to FHE.

This work builds directly off of the scheme utilizing only Yao’s
circuits, with the goal of amortizing the cost of building the circuit
over many evaluations. Their scheme involves running the entire
circuit (double decryption and all) under a FHE scheme. This
allows the worker to compute the encryption of the random number
representing the state of the output wire, but not see it directly.

Because of this jump, the Garbled Circuit may now be used
multiple times for different inputs. However, they note an impor-
tant weakness in their scheme - the worker may not learn whether
the delegator accepted the computation or not. Given a sufficiently
advanced adversary that perturbs the garbled circuit for each exe-
cution, the decision of the delegator to accept the computation may
leak a bit of information about the circuit itself.

4.2 Turing Machine Based Approaches
The works below are able to break away from the standard model
of computation in terms of Boolean Circuits and are able to create
results that operate directly on Turing Machines.

Running Turing Machines on Encrypted Data. Unlike previous
approaches, Goldwasser et. al. [GK13a] provides a result that mod-
els computation off of Turing Machines. The first major benefit of
this approach is avoiding the “worst case runtime curse” in which
Turing Machines compiled into Boolean Circuits take the same
amount of time on every input - the worst case runtime. They are
able to build off of their previous results [GK13b] that provide the
first succint functional encryption scheme to create reusable gar-
bled circuits.

In this work, they create many cryptographic objects of value:

1. Attribute Based Encryption for Turing Machines

2. Functional Encryption for Turing Machines

3. Reusable Garbling for Turing Machines

4. Fully Homomorphic Encryption for Turing Machines

The work relies on Witness Encryption to provide the reductions
between these different esoteric forms of encryption.

It is with this result that we are able to generalize our Verifiable
Computation schemes to protocols that necessarily hide the under-
lying function being evaluated. Now, rather than communicating
the function to the worker as a garbled circuit, the delegator can
actually encrypt the function itself to evaluate it. Using this result,
the function can be encoded as a Turing Machine, encrypted using
their FHE scheme for Turing Machines, and then evaluated under
the Universal Turing Machine.

In their work, they give the option of utilizing the Peppinger-
Fischer transformation [PF79] to hide the runtime of the Turing
Machine by making it oblivious. We can utilize this to add another
layer of security to our scheme with the trade off of runtime.

Blind Turing Machines. The work by Rass [R13] is able to suc-
cessfully combine the notions of hiding the inputs to the computa-
tion and the algorithm itself from the worker in the Turing Machine
model. The work focuses on showing that in order to evaluate a
Turing Machine, one does not need a Fully Homomorphic Encryp-
tion scheme. Rather, using ElGamal as an example, only requires
multiplicative Homomorphisms.

The motivation behind this work is the speed of current Verifi-
able Computation schemes and their heavily utilization of the slow
FHE system. It is certainly an encouraging result for exploring Ver-
ifiable Computation in real world systems.

4.3 Pure Function Approach
In this approach, rather than compiling the function to any interme-
diary representation, the delegator can simply give the function to
the worker.

Improving the FHE-Based Scheme. A follow-up work to the
[GGP10] scheme of Verifiable Computation attempts to alleviate
the inefficiencies present in the circuit-generation stage - the large
public key length and the runtime [CKV10].

The work draws on the intuition about the knowledge of the
worker. If the delegator were to ask the worker to compute the func-
tion for two identically distributed inputs (only not-knowing the re-
sult for one of the two), the worker would be unable to distinguish
between the input the delegator “cared about” and the random in-
put. Therefore, the delegator could check that the computation was
performed correctly for the random input and use that as a signal
for whether the worker attempted to cheat for the other input.

They are able to utilize several layers of FHE to allow for arbi-
trary inputs with reusable precomputed pairs. In effect, each input
is encrypted under FHE so that the worker cannot distinguish be-
tween an input drawn from a random distribution an input chosen
purposefully. FHE is used to evaluate the function “under the en-
cryption”. Much like [GGP10], they utilize FHE again over the en-
tire scheme to make it reusable. This ensures that the worker learns
nothing about the randomized, pre-computed inputs regardless of
malicious aciton.

Note that because this scheme requires transporting the function
directly to the worker, it cannot provide secure function evaluation
and hide the function from the worker. However, this technique is
general enough that it can be applied to other schemes that hide the
function being evaluated.

5. Practicality
As discussed in previous sections, one of the main obstacles to
practicality of Verifiable Computation schemes is their heavy re-
liance on Fully Homomorphic Encryption. While much work is
being done to improve the results of the original Gentry [G09]
scheme, the most complete implementation test of the scheme [GH11]
showed than many operations were on the verge of taking minutes
on modern computers for appropriately sized keys.

Since many of these schemes rely on utilizing one (or two)
rounds of FHE at each step of evaluation, it is certainly difficult
to envision a situation in which a real-world computation could
be performed in this manner without being an order of magnitude
more expensive than simply doing the calculation.

Fortunately, with the renewed interest in Fully Homomorphic
Encryption, improvements are being created. Since all of these
schemes utilize FHE as a primitive, any speedups of the underlying
encryption will increase the speed of the scheme itself.

Additionally, avenues with Turing Machines are promising due
to their use of other encryption primitives (FE, ABE) which may
see speed increases in the future.

6. Conclusion
Verifiable Computation has many immediate uses in a world where
being reliant on the “cloud” for processing power is commonplace.
Much like Fully Homomorphic Encryption before its proof by
construction, the applications are clearly present.

In this paper, we have discussed a novel use case for the Ver-
ifiable Computation primitive as well as several schemes that at-
tempt to create Verifiable Computation. This paper has addressed
important primitives that are used to create Verifiable Computation
including the approaches that are used.

Unfortunately, under the current limits of Fully Homomorphic
Encryption, these schemes are not fit for use in a real-world envi-
ronment, but will hopefully see improvement over time. Assuming
that this obstacle is eventually overcome, it would be interesting to
see the creation of compilers like Zahur’s [Z14] that effectively al-
low normal developers to create Verifiable Computations by trans-
lating their high-level code into Boolean Circuits or Turing Ma-
chines.

As can be seen with the Motivating Example, a fast Verifiable
Computation scheme could be used to change the economics be-
hind content producing websites today changing users’ computers
into a distributed version of the large data centers that we rely on
so heavily.

References
[BSW11] Boneh, Dan, Amit Sahai, and Brent Waters. ”Functional

encryption: Definitions and challenges.” Theory of Cryptography.
Springer Berlin Heidelberg, 2011. 253-273.

[CKV10] Chung, Kai-Min, Yael Kalai, and Salil Vadhan. ”Improved
delegation of computation using fully homomorphic encryption.”
Advances in CryptologyCRYPTO 2010. Springer Berlin Heidelberg,
2010. 483-501.

[G13a] Garg, Sanjam, et al. ”Candidate indistinguishability obfuscation
and functional encryption for all circuits.” Foundations of Computer
Science (FOCS), 2013 IEEE 54th Annual Symposium on. IEEE, 2013.

[G13b] Garg, Sanjam, et al. ”Witness encryption and its applications.”
Proceedings of the forty-fifth annual ACM symposium on Theory of
computing. ACM, 2013.

[G09] Gentry, Craig. ”Fully homomorphic encryption using ideal lattices.”
STOC. Vol. 9. 2009.

[G06] Goyal, Vipul, et al. ”Attribute-based encryption for fine-grained
access control of encrypted data.” Proceedings of the 13th ACM
conference on Computer and communications security. ACM, 2006.

[GGP10] Gennaro, Rosario, Craig Gentry, and Bryan Parno. ”Non-
interactive verifiable computing: Outsourcing computation to untrusted
workers.” Advances in CryptologyCRYPTO 2010. Springer Berlin
Heidelberg, 2010. 465-482.

[GH11] Gentry, Craig, and Shai Halevi. ”Implementing gentrys fully-
homomorphic encryption scheme.” Advances in CryptologyEURO-
CRYPT 2011. Springer Berlin Heidelberg, 2011. 129-148.

[GK13a] Goldwasser, Shafi, et al. ”How to run turing machines on
encrypted data.” Advances in CryptologyCRYPTO 2013. Springer Berlin
Heidelberg, 2013. 536-553.

[GK13b] Goldwasser, Shafi, et al. ”Reusable garbled circuits and succinct
functional encryption.” Proceedings of the forty-fifth annual ACM
symposium on Theory of computing. ACM, 2013.

[P13] Parno, Bryan, et al. ”Pinocchio: Nearly practical verifiable compu-
tation.” Security and Privacy (SP), 2013 IEEE Symposium on. IEEE,
2013.

[PF79] Pippenger, Nicholas, and Michael J. Fischer. ”Relations among
complexity measures.” Journal of the ACM (JACM) 26.2 (1979): 361-
381.

[R13] Rass, Stefan. ”Blind Turing-Machines: Arbitrary Private Com-
putations from Group Homomorphic Encryption.” arXiv preprint
arXiv:1312.3146 (2013).

[Z14] Zahur, Samee. ”Obliv-c: A lightweight compiler for data-oblivious
computation.” Workshop on Applied Multi-Party Computation. Mi-
crosoft Research, Redmond. 2014.

