
Automating the Software Development Process

Jamie Floyd

University of Virginia
jfloyd@cs.virginia.edu

Abstract
This paper surveys the development and use of the spi
calculus, an extension of the pi calculus with crypto-
graphic primitives. It motivates the creation of the ini-
tial pi calculus and demonstrates how it can be used to
describe abstract security protocols. However, the basic
pi calculus has limitations when attempting to model
realistic protocols, so the spi calculus was developed
to help address them. Both the pi and spi calculus are
extremely expressive abstract programming languages
that also can offer proofs about certain security proper-
ties. This paper shows an example of a simply security
protocol in both languages. It then discusses how the
spi calculus is used in research and practice today.

Categories and Subject Descriptors D.2.0 [Secu-
rity]: general

Keywords concurrency, security

1. Introduction
A significant area of work within programming lan-
guages research is the development of high-level lan-
guages that abstractly model computing systems in a
useful way. The most well known example is likely
the λ-calculus, which is a functional programming lan-
guage that is equally powerful as a Turing machine.
While it excels at modeling sequential programs, the
λ-calculus and its variants are insufficient at modeling
concurrent systems. The pi calculus, however, is capa-
ble of modeling these systems very effectively. Among

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PLDI ’14, Dec 12, 2014.
Copyright c© 2014 ACM . . . $15.00.
http://dx.doi.org/10.1145/

many others, one major application of the pi calcu-
lus is describing security protocols. Unfortunately, the
base pi calculus has some limitations when trying to
describe a realistic security protocol. Abadi and Gor-
don sought to extend the pi calculus with cryptographic
primitives to better enable the modeling of these sys-
tems. They called their result the spi calculus.

This paper surveys the major works in the develop-
ment and use of the spi calculus. Section 2 introduces
the pi calculus, without which understanding the spi
calculus would be impossible. It details the motivation,
history, and basic primitives of the language. Section 3
then introduces the spi calculus, noting the major dif-
ferences from the pi calculus. A simple example is run
through both sections 2 and 3. Section 4 presents us-
ages of the spi calculus in recent years, and section 5
concludes.

2. The Pi Calculus
2.1 History
When computer networks were first created and came
into widespread use, it became clear than communicat-
ing systems are fundamentally different than previous
computer systems. Similarly, the tools we had to model
computing systems, such as the well-known λ calculus,
failed to capture many of the important properties of
communication in a distributed world. Consequently,
researchers begin looking for other ways of describ-
ing communicating systems. The resulting tools were
known as process calculi, or methods of calculating or
modeling concurrent systems through processes.

The first major process calculus was introduced by
Hoare in 1978 [1]. It was known as CSP (Communicat-
ing Sequential Processes). Just two years later, Robin
Milner proposed a similar approach called CCS (the
calculus of communicating systems) [2]. The CCS had
a stronger formal basis than CSP and was more flexible



as well. It was a well-accepted tool, but had one major
flaw: it was limited to static communication structures.
It described communication over a specific, static net-
work of communication channels. It was impossible in
CCS to add, remove, or alter channels in the system.

The pi calculus is an extension to CCS proposed by
Milner in 1989 that is designed to address that flaw [3].
It replaced static communication channels with channel
names. Instead of using an established static system of
channels, the pi calculus introduced the notion of a dy-
namic system of named channels and communication
instructions that depended on channel names. Channels
can be created dynamically, assigned to variables, and
passed as messages.

The resulting system was still elegantly simple but
extremely expressive. All functional programs can be
encoded into the pi calculus and this encoding empha-
sizes the dialog nature of concurrent computation. Just
as the λ calculus is a foundation for sequential com-
putation, the pi calculus is a foundation for concurrent
computation.

2.2 Outline of the Pi Calculus
First, it is worth noting that there are multiple versions
of the pi calculus. This paper will outline the same
version as the original spi calculus paper, simplified for
brevity.

Much like everything in the λ calculus is a function,
everything in the pi calculus is a process. The set of
processes in the pi calculus is defined by the grammar:

P,Q,R ::=

M[N].P output

M(x).P input

P | Q composition

(vn)P restriction

!P replication

[M is N] P match

0 nil

The constructs of the pi calculus have the following
intuitive meanings:

• An output process m[N ].P is ready to output on
channel m. If an interaction on that channel occurs,
the term N is communicated and then process P
runs.
• An input process m(x).P is ready to input from

channel m. If an interaction occurs in which N is

communicated on m, then process P [N/x] runs (P
with every free occurrence of x replaced with N ).
• A composition P |Q behaves as processes P and Q

running in parallel. Each may interact with the other
or with other channels independently of each other.
• A restriction (µn)P is a process that makes a new

private name n which may occur in P then behaves
as P . It is important to note that the scope of n is
restricted to P .
• A replication !P behaves as an infinite number of

copies of P running in parallel.
• A match [MisN ]P behaves as P provided that

terms M and N are the same. Otherwise, it does
nothing.
• The nil process does nothing.

There is one more term the needs an intuitive defini-
tion for use int the rest of this paper: P ' Q means the
behaviors of processes P and Q are indistinguishable.
They may have different internal structure, but a third
process R cannot distinguish running in parallel with
P from running in parallel with Q. While [4] defines
this relation in further detail, this informal understand-
ing will suffice for this paper’s scope. Anytime this pa-
per references the equivalence or indistinguishability or
two processes, this notion applies.

2.3 Example Using the Pi Calculus
As mentioned before, it is possible to describe some ab-
stract security protocols purely in the pi calculus. Com-
mon security protocols are designed around channels
on which only a given set of parties are allowed to send
or receive data. As we have seen, this is incredibly sim-
ple in the pi calculus.

In this example, two parties, A and B, share a chan-
nel cAB . Only A and B can send data or listen through
this channel. The protocol is simply that A uses cAB to
send a single message M to B. In the pi calculus:

A(M) , cAB[M ]

B , cAB(x).F (x)

Inst(M) , µcAB(A(M)|B)

The processes A(M) and B describe the two parties
and Inst(M) describes an instance of the whole pro-
tocol. The effect of this instance is: restricted channel
cAB is created, A sends M over cAB , B receives M



from cAB , binds it to local variable x, then computes F
on x.

The protocol described above has two important
cryptographic properties:

1. Authenticity or integrity: B always applies F to the
message M that A sends. An attacker cannot cause
B to apply F to some other message.

2. Secrecy: the message M cannot be read in transit
fromA toB: if F does not revealM , then the whole
process does not reveal M .

Both of these properties can be defined in terms of
process equivalence. The secrecy property is simple:
if F (M) , F (M ′) for any M,M ′ then Inst(M) ,
Inst(M ′). Another way to say this is if F (M) is in-
distinguishable from F (M ′), then the protocol with
message M is indistinguishable from the protocol with
message M ′. To formalize the authenticity property,
compare this protocol Inst(M) with another protocol,
defined as follows:

A(M) , cAB[M ]

Bspec(M) , cAB(x).F (M)

Instspec(M) , µcAB(A(M)|Bspec(M))

In this protocol, A is as usual. However, B is replaced
with a variant Bspec(M) that receives the same input
and acts like B but Bspec(M) already knows M . We
take Instspec(M) , Inst(M) for any M as our au-
thenticity property.

3. The Spi Calculus
3.1 Motivation
As we have seen, it is possible to describe a security
protocol, however primitive, in the pi calculus. How-
ever, the pi calculus is not capable of describing every
protocol, particularly more complex ones.

From the modern cryptographer’s perspective, the
primary lacking of the base pi calculus is the specifi-
cation that channels are restricted when they are cre-
ated with no further explanation. It is natural to won-
der how we could ever claim that a channel is com-
pletely private, and that no adversary would be able
to get any information from it (or, in fact, know that
it exists!). One possible expansion to handle this is to
describe in further detail how to create such a chan-
nel that would be completely hidden. However, this is
not how most of modern cryptography works. Instead,

we can say that all communication channels are public
and just pass data through it that would be of no use to
an adversary. Namely, we want to encrypt and decrypt
data and only have the ciphertext available on the pub-
lic channel. This is the approach of the spi calculus,
which is built as an extension of the pi calculus with
cryptographic protocols.

3.2 Outline of the spi calculus
The spi calculus requires two primary additions to the
syntax of the pi calculus. First, to represent encryption,
{M}N ; second, to represent decryption, case L of{x}N in P .

The intuitive meanings of these terms is as follows:

• The term {M}N represents the ciphertext obtained
by encrypting the term M under the key N using a
shared-key cryptosystem.
• The process case L of{x}N in P attempts to de-

crypt the term L with the key N . If L is a ciphertext
of the form {M}N , then the process behaves like
P [M/x]. Otherwise it does nothing.

There are some significant cryptographic assumptions
implicit in this definition:

1. The only way to decrypt a ciphertext is to know the
corresponding key (note that, as of the original spi
calculus, there is no notion of probability so this
statement is an absolute).

2. An encrypted ciphertext does not reveal the key that
was used to encrypt it.

3. There is sufficient redundancy in messages so the
decryption algorithm can detect if a ciphertext was
encrypted using the expected key.

3.3 Example Using the Spi Calculus
This section will continue the example from section
2.3, extending and modifying it with cryptographic
primitives. The essence of the protocol will be very
simple: we assume A and B share a private key kAB

and there exists a public channel cAB on which A and
B can communicate. A will send message M to B
under kAB on cAB . In the spi calculus, we write

A(M) , cAB[{M}kAB
]

B , cAB(x).case x of{y}kAB
in F (y)

Inst(M) , µkAB(A(M)|B)



where Inst(M) is once again an instance of the proto-
col. This is very similar to the example in the pi calcu-
lus, but with a couple key differences.

• We now have the notion of encryption, decryption,
and ciphertexts. Note that these are not specific en-
cryption or decryption algorithms - this is a model of
a generic private shared key cryptosystem. As such,
it is only as secure as the cryptosystem itself.
• Our notion of security no longer relies on the strict

restriction of a channel. The channel cAB in this
example is completely public. The only requirement
is that both A and B be able to use it; otherwise it
has no security guarantees.

Our notions of authenticity and secrecy are very simi-
lar. Secrecy remains completely unchanged: Inst(M) ,
Inst(M ′) if F (M) , F (M ′) for any M,M ′. To for-
malize the notion of authenticity, we once again create
another protocol to compare to Inst(M):

A(M) , cAB[{M}kAB
]

Bspec(M) , cAB(x).case x of{y}kAB
in F (M)

Instspec(M) , µkAB(A(M)|Bspec(M))

Then authenticity is defined as Inst(M) , Instspec(M)
for any M .

3.4 Other Examples
In [3], Abadi et. all give several other examples of
protocols in both the pi and spi calculi. For instance,
the model a simplified version of the ”wide mouthed
frog protocol” that allowed for the creation of a new
restricted channel from A to B through some trusted
party S. The spi calculus turned this protocol into one
of key agreement through a trusted third party. [3] also
goes on to describe an authentication protocol in the spi
calculus, but it is omitted here for brevity.

3.5 Discussion
Even given these limited protocols, it is clear that writ-
ing formally in the spi calculus is more difficult than
other informal notation systems. However, the spi cal-
culus versions are more detailed; they make clear what
messages are sent, how those messages are generated,
and how they are checked. These benefits of the spi cal-
culus come with a complexity price, but enable finer
analysis of the protocols they describe.

4. The Spi Calculus in the 21st Century
The spi calculus was originally developed in 1996
(though not published until the next year). It was re-
ceived well at the time, but only as a formal model-
ing language for security protocols. With more than 15
years to develop, it is natural to wonder what has come
from the spi calculus that is benefiting the field today.

There has been recent work [5][6] that uses recent
advances in automatic program generation or synthesis
to construct real implementations of security protocols
based on a spi calculus specification. The authors of
[6] note that the spi calculus is an untyped high level
programming language. They propose the addition of
a type system as well as a translation function from
spi calculus to Java. They, as an extension of [5], add
formal conditions on a custom Java library such that
if the library implementation code satisfies the condi-
tions then the generated Java program correctly simu-
lates the spi calculus specification. This paper proposes
only part of the necessary library to make this verified
translation a reality.

The motivation to continue that work is strong, how-
ever. The authors point out the many advancements in
automatically verifying security properties in the spi
calculus, pointing to work done by Durante, Blanchet,
and Abadi since the turn of the century. Through a com-
bination of model checking and theorem proving, we
are able to verify many security properties on protocols
described in the spi calculus. [5] describes work on an
automatic tool to detect protocol flaws based on only
spi calculus specifications.

5. Conclusions
The pi calculus is a process calculus created to model
concurrent systems that can dynamically alter their
communication channels. It is possible to model some
security protocols in the pi calculus, but its expressive-
ness and utility is limited. To enhance it’s usefulness
for security, the pi calculus was extended with crypto-
graphic primitives in the spi calculus. The spi calculus
is effective at describing security protocols at a high
level. It is possible to automatically check certain secu-
rity properties of protocols written in the spi calculus,
and some work has been done to automatically convert
spi calculus to Java implementations while retaining
those security guarantees.



References
[1] C.A.R. Hoare. Communicating Sequential Processes, in

ACM 1978.
[2] R. Milner, J. Parrow, D. Walker. A calculus of mobile

processes, I and II, in ScienceDirect, 1989.
[3] M. Abadi, A. Gordon. A Calculus for Cryptographic

Protocols: The Spi Calculus, in Conference on Computer
and Communications Security (CCS), 1997.

[4] M. Abadi, A. Gordon. Reasoning about Cryptographic
Protocols in the Spi Calculus, in CONCUR, 1997.

[5] D. Pozza, R. Sisto, L. Durante. Spi2Java: Automatic
Cryptographic Protocol Java Code Generation from
spi calculus, in International Conference on Advanced
Information Networking and Application (AINA), 2004.

[6] A. Pironti, R. Sisto. Provably correct Java implementa-
tions of Spi Calculus security protocols specifications, in
ScienceDirect, 2008.


