
The Spi Calculus
Jamie Floyd

Points for Style

• This is (at least partially) a PL topic
• But I strive to make it accessible

• Lesson or lecture – designed to teach

• Builds upon itself – will snowball
• Ask questions!

• But, I will have to go fast…

What is the Spi Calculus?

• An extension of the Pi Calculus
with cryptographic primitives.

• Pi + Crypto = Spi

• Developed in 1997 by Martin
Abadi and Andrew Gordon

Outline

• Understand the Pi Calculus
• Why is it important/useful?

• Work through a couple simple security protocols using it

• Add in features and move to the Spi Calculus
• Why is it helpful?

• Extend the previous protocol

• Examine a new, slightly more complicated protocol in both
the Pi and Spi Calculi

Process Calculi – Motivation and History

• Computer networks changed our model of computation
• λ-calculus only works for sequential programs

• C.A.R. Hoare, 1978 – CSP (Communicating Sequential Processes)

• Robin Milner, 1980 – CCS (Calculus of Communicating Systems)
• Stronger and more flexible than CSP

• One major flaw!

• The answer: Pi Calculus (Milner et al., 1989)
• “all that and a bag of chips”

• Simple but expressive

The Pi Calculus – Definition

• Multiple versions - presenting a simplified version for clarity
• Even simpler than the first Pi Calculus paper

• It will be enough to make it through simple protocols

The Pi Calculus – Definition

• The Pi Calculus is a very high level ‘programming language’
• Similar to the concept of the λ-calculus, but for concurrent programs

• Everything in the Pi Calculus is a process

• Processes communicate with each other using channels

The Pi Calculus – Definition

Everything in the Pi Calculus can be expressed in the grammar:

c<M>.P output message M on channel c, then do P

c(x).P receive message on channel c and binds it to x, then do P

P | Q composition – run P and Q in parallel

(μc)P restriction – create a new private name in P (called c)

There’s more (replication, case matching, nil processes, etc.)
but we won’t need them

The Pi Calculus – Definition

Just one more term we need:
• P ≈ Q means the behaviors of processes P and Q are

indistinguishable
• They can have different internal structure
• A third process R cannot tell the difference between:

• R | P

• R | Q

The Pi Calculus – Example 1

Speaker = air<M> sends M over the air

Phone = air(x).wire<x> copies M from air to wire

AT&T = wire(x).fiber<x> copies M from wire to fiber

System = Speaker | Phone | AT&T the whole system

System -> fiber<M>

example adapted from W. Weimer

The Pi Calculus – Example 1

It’s easy to snoop on this system!

Introduce another process:

WireTap = wire(x).wire<x>.NSA<x>

The Pi Calculus – Example 1

Speaker = air<M>

Phone = air(x).wire<x>

WireTap = wire(x).wire<x>.NSA<x>

AT&T = wire(x).fiber<x>

System’ = Speaker | Phone | WireTap | AT&T

System’ -> fiber<M>

The Pi Calculus – Example 1

The problem:

System = Speaker | Phone | AT&T

System’ = Speaker | Phone | WireTap | AT&T

As defined, System ≈ System’.

We can’t tell if the NSA is tapping our

phone calls in this system.

The Pi Calculus – Example 2

• Simplest (secure) system possible: A sends message M to B over cAB

A = cAB<M>

B = cAB(x)

System = (μcAB)(A | B)

This time, the channel cAB is restricted.

The Pi Calculus – Example 2

• Simplest (secure) system possible: A sends message M to B over cAB

A = cAB<M>

B = cAB(x).F(x)

System = (μcAB)(A | B)

This time, the channel cAB is restricted.

The Pi Calculus – Example 2

Using this protocol, we can define two important cryptographic
properties:

1. Authenticity or integrity: B always applies F to the message M that
A sends. An attacker cannot cause B to apply F to some other
message.

2. Secrecy: the message M cannot be read in transit from A to B. If F
does not reveal M, the whole process does not reveal M.

The Pi Calculus – Example 2

• Secrecy: if F(M) ≈ F(M’) for any M,M’ then System(M) ≈ System(M’).

• Authenticity: Create a new process, Systemspec .

A = cAB<M>

Bspec = cAB(x).F(M)

Systemspec = (μcAB)(A | Bspec)

The protocol has the authenticity property if Systemspec ≈ System

Finally… The Spi Calculus

What’s wrong with this protocol as expressed in the Pi Calculus?

• The private channel cAB(had to be created in System, but with no
mention of:
• how A and B can access it

• why and attacker cannot

The notion of a completely private channel isn’t realistic.

New idea: use public channels, but only send encrypted data

The Spi Calculus – Definition

Two new terms to define:

{M}N the ciphertext resulting from encrypting message M with key N

[C, x]N.P attempts to decrypt C with key N. If C = {M}N then process P[M/x]
runs. If decryption fails, it does nothing.

Note: these terms don’t talk about how encryption/decryption occurs.

Thus, we are still dependent on security of any underlying algorithms.

The Spi Calculus – Example 1

Return to our example: A sends message M to B over cAB.

This time, cAB is public.

A = cAB<{M}KAB
>

B = cAB(C) . [C, x] KAB
. F(x)

System = (μKAB)(A | B)

Secrecy and Authenticity can be defined the same as before.

The Spi Calculus – Example 1

• This protocol is more realistic than the Pi Calculus version

• Where old protocol had to establish a private channel, new protocol
has to establish a private key
• Both are ‘hand-waivy’

• We can describe a protocol for each of these!

Wide-Mouthed Frog

• In Pi Calculus, a protocol for channel establishment

• Uses a trusted third party

A = (μcAB)cAS<cAB> . cAB<M>

S = cAS(x) . cBS<x>

B = cBS(x) . x(y) . F(y)

System = (μcAS)(μcBS)(A | S | B)

A

S

B

Wide-Mouthed Frog

• In Spi Calculus, a protocol for key agreement

• Uses a trusted third party

A = (μkAB)cAS<{kAB}kAS
> . cAB<{M}kAB

>

S = cAS(x) . [x, y]kAS
. cBS<{y}kBS

>

B = cBS(x) . [x, y]kBS
. cAB(z1) .

[z1, z2]y . F(z2)

System = (μkAS)(μkBS)(A | S | B)

A

S

B

The Spi Calculus Today

• The Spi Calculus is used as a specification language for
security protocols.
• It is possible to automatically detect some security defects in a

protocol

• There exists some work in converting Spi Calculus
specifications to a Java implementation of the protocol
• Also requires specification of underlying encryption

• Comes with some correctness/security guarantees

Conclusions

• The Pi Calculus is a process calculus capable of describing a
system of dynamic channel creation and manipulation.
• It is possible to describe security protocols in the Pi Calculus alone.

• The Spi Calculus is an extension of the Pi Calculus with
cryptographic primitives.
• It enables us to model more realistic systems in which processes

must communicate over public channels.

Questions?

