
CS6105 Final Report

Nakkul Sreenivas
ns3kb

December 15, 2014

1



Prime numbers form the basis of all integer numbers. In a field where in-

formation is considered discrete, prime numbers are integral in cracking codes

and generating keys. Take, for example, a polyalphabetic cipher. When the ci-

pher was first cracked, it was done by indentifying the key length using patterns

between repeated phrases. Factoring the set of lengths between these phrases

allowed an adversary to break the cipher and identify the length of the key.

Since then, prime generation has become more popular as a means of creating

public keys. Multiplying two large prime numbers to create a public key lets

the user decrypt an message using the two original factors. Due to so many

modern day encryption schemes relying on this method, prime factorization is

a powerful tool with many practical applications.

Prime factorization algorithms are seperated into two categories. Category 1

algorithms are dependent upon the size of the smallest prime. Since prime

factorization can be applie recurzively or numbers with more than two prime

factors, knowing the smallest prime can drastically reduce the size of the number

n thereby making the problem easier to solve. Category 2 algorithms are more

generaly purpose and are usually more applicable to cryptography. Most prime

factorization is done on numbers that are the product of only two primes. More

prime numbers increases the chance that a given public key can be factored

and thereby decrypted. The one exception to this algorthm is Shor’s algorithm

which will not be covered in this report, but it is important to note that Shor’s

algorithm is the only polynomial run time algorithm known for factorizing prime

numbers.

The most trivial way to test determine the prime factorization of a number

n is to test divisibility by primes less than
√
n. Since algorithm run time is

2



measured in terms of the size of the number n, the upper bound for worst-case

run time becomes O(
√
n). This reduces to O(

√
n/log(n)) when using a table

to store prime numbers so as to avoid testing composite numbers. Although

this method has become obsolete, it introduces the theory of sieves which is a

a precedent for the more current algorithms for prime factorization. A sieve

is any algorithm that works by eliminating elements within a given set to un-

til all that remains is a set of solutions. This idea was used to create a more

efficient algorithm to factoring large primes called the quadratic sieve. The

quadratic sieve relies on the priniciple of congruence of squares to make educated

”guesses”. The algorithm searches for number pairs of form

p2 ≡ q2 mod n

When such a pair is found, the expression can be reduced to give

p2 − q2 ≡ 0 mod n

. Such a pair guarantees that there are two factors of n such that neither factor

(p− q) nor (p+ q) is divisible by n. This produces two factors for n that aren’t

divisible by one another, but additionally, in a case of public key decryption,

this produces both the prime factors as they are the only ones that exist. The

quadratic sieve algorithm takes an extremely long amount of time to search for

these pairs due to the sheer size of the domain for p and q. However, this method

is still one of the fastest methods (fastest for integers approximately less than

10100 and second fastest method overall).

The fastest method currently in use is the genereic number field sieve (GNFS).

The GNFS uses a similar theory to the quadratic sieve, but it has a different

3



algorithm for searching for smoothnumbers. An n-smooth number is a num-

ber that, in fully prime factorized form, has n factors. The principles of both

methods still rely on the congruence of squares method, but the GNFS uses a

faster algorithm in its search for smooth numbers. As the name states, the al-

gorithm uses number fields to get a sub-exponential search for smooth numbers.

From here the GNFS writes the small numbers as n-vectors, n being the num-

ber of primes in its prime factorization, and then uses these vectos as a basis in

searching for a linear combination to search for pairs of numbers p and q. How-

ever, the GNFS is a complicated algorithm relying on determining the proper

coefficients for an properly chosen polynomial. For this reason, the algorithm

is both hard to implement and not practical for integers that aren’t extremely

large. Without a size restriction or a restriction on memory, the GNFS is the

most efficient factorization method, but the quadratic sieve is more efficient for

smaller numbers and memory restrictions.

The two sieve algorithms discussed above rely solely on the size of the number

being factored making them Category 2 general purpose algorithms. However,

there exist special Category 1 algorithms that have practical use. Despite the

fact that they are heavily reliant on the property of the number itself as not be-

ing the product of larger prime numbers, this same liability makes it worthwhile

in eliminating large but smooth composite numbers in the sieve simultaneously

with the quadratic/GNFS algorithms.One example is Shanks’ square form fac-

torization which makes use of a variant of the Fermat Method. The advantage

of this method was that it could be performed on a calculator with minimal

memory and relative ease. Unlike the other sieve algorithms, Shanks’ algorithm

could efficiently factor integers with smaller prime factors with a smaller mem-

ory requirement.

4



One of the more recent improvements to the prime factorization problem was

related to the Fermat algorithm. Fermat realized that by putting the number

n in the form

n = x2 − y2 = (p + q)2 − (p− q)2

it would be easier to search for numbers p and q that satisfied the equation.

However, searching for p and q is not an easy task which is why the new tech-

nique estimates these values so as to create a potential solution. Using certain

properties of modulus and numerical distance, three mathematicians recently

found a way to closely estimate values of p and q. It relies on calculating the

MSB’s in common between p and q to then see how smooth the two numbers

are in relation. This results in an increased likelihood that the two numbers will

overlap in a given vector space and thereby eliminates collisions and potential

choices that won’t work. The optimization has an 81.7

In conclusion, there exist multiple different algorithms to factorize primes based

on the various constraints of number size, memory allocation, and properties of

the number itself such as the distribution of its prime factors. However, there

is no doubt that prime factorization is integral in cryptographic schemes and

proving their computational secity. The paper doesn’t explore more outdated

and obscure methods such as Pollard’s Rho algorithm, Dixon’s algorithm, and

Shor’s algorithm for quantum computers, but sieve theory and Fermat’s iden-

tity for primes are all tools that have been used to bring us closer to potentially

cracking the foundation of modern day encrytion.

5



1. Wu, M., Tso, R., & Sun, H. (2014). On the improvement of Fermat factor-

ization using a continued fraction technique. Future Generation Computer

Systems, 30, 162-168.

2. Bahmann, H., & Schatte, P. (2001). Analysis of Some Elementary Algo-

rithms for Prime Factorization. Computing, 66, 91-95.

3. Gries, D., & Misra, J. (1978). A Linear Sieve Algorithm for Finding Prime

Numbers. Communications of the ACM, 21(12), 999-1003.

6


