An Overview of Integer Factorization Algorithms NAKKUL SREENIVAS

Practical Applications and Uses

Primes are the basis of modern day encryption schemes. Why?

- No factors which makes it harder to decrypt without knowing the exact prime value. Refer to Polyalphabetic cipher
- Fewer collisions when encrypting.
- Hard to generate large primes (with exception of certain special primes i.e. Mersenne Primes etc.)
- For most intents and purposes prime factorization is the same problem as prime generation.
- Used for public key generation (RSA encryption) by multiplying two large primes with one being a key.

Types of Algorithms

Category 1

- Pollards Rho, Fermat, Euler
- Category 2
 - ▶ Dixons, GNFS, Quadratic, Shanks
- Special Cases
 - ► Shor's

Upper bound for Worst Case Runtime

- Runtime based on size of integer N.
- Brute force (Sieve of Erastosthenes) gives a lower bound of \sqrt{n} .
- ▶ Include basic optimizations of the sieve $\sqrt{n}/\log(n)$.
 - ► Store in table
 - Start at the square of the number

1?	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
Numbers that divide by 2 in GREEN Numbers that divide by 3 in BLUE									

Numbers that divide by 2 in GREEN Numbers that divide by 3 in BLUE Numbers that divide by 5 in ORANGE Numbers that divide by 7 in PURPLE

Quadratic Sieve

- Fermat's Factorization method
- Searching for values of p and q.
- Comparative speed and run time:
 - ► $O(e^{\sqrt{\ln(n)\ln(\ln(n))}})$
 - Fastest algorithm for numbers up to about 10^{100}

N = 255
$\therefore a = \sqrt{255} = 15.9687 = 16$
·· = + 200 - 1010001111 - 10
<i>C</i>
$b = \sqrt{a^2 - N}$
$\therefore b = \sqrt{(256 - 255)}$
$\therefore b = 1$
a + b = 17
a - b = 15

General Number Field Sieve

- Works similar to the quadratic sieve
- Includes an optimal strategy for choosing p and q using smooth numbers
- Assigns each number to a vector given its prime factorization.
 - Uses these numbers to search for the proper p and q in form using linear algebra (matrix reduction)
- Computationally very intensive
- Requires huge amounts of memory but is faster for extremely large values of n.

Non-Sieve Algorithms

- CFRAC –Lehmer and Powers
- Dixon's- John D. Dixon
 - Uses a weaker assumption but with limitations
- Shanks' Method (congruence of squares and Fermat's)

Alternate Algorithms

- Other algorithms can be useful for reasons apart from cryptography
- If not searching for a number comprised of two large primes, can use a category 1 algoritm
- Most calculators use a variant of Pollard Rho's algorithm.
- Other methods include Fermats and Euler's methods.

Recent Advancements

- Three Taiwanese mathematicians developed a variant of Fermat's algorithm to search for factors in a more efficient manner.
- Used the technique of continued fractions and optimized a method to eliminate loop counts.
- Success rate of approximately 81.7% with large composite numbers.

Recap and Related Topics

- Integer Factorization relevance
- Advancements
- ► Shor's algorithm