Survey of Oblivious Transfer Extension

Natnatee Dokmai

Garbled Circuit

Beaver's Protocol

IKNP Protocol

INPUT OF SENDER S: m pairs $(x_{j,0}, x_{j,1})$ of ℓ -bit strings for $1 \leq j \leq m$. INPUT OF RECEIVER \mathcal{R} : m selection bits $\mathbf{r} = (r_1, ..., r_m)$. COMMON INPUT: a security parameter k. ORACLE: a random oracle H: $[m] \times \{0, 1\}^k \to \{0, 1\}^\ell$.

1. S initializes a random vector $\mathbf{s} \in \{0, 1\}^k$ and \mathcal{R} a random $m \times k$ bit matrix T. We have the following T:

$$T = \begin{bmatrix} t_1^1 & t_1^2 & \dots & t_1^k \\ t_2^1 & t_2^2 & \dots & t_2^k \\ \vdots & \vdots & \ddots & \vdots \\ t_m^1 & t_m^2 & \dots & t_m^k \end{bmatrix} = \begin{bmatrix} \mathbf{t}_1 \\ \mathbf{t}_2 \\ \vdots \\ \mathbf{t}_m \end{bmatrix} = \begin{bmatrix} (\mathbf{t}^1)^T & (\mathbf{t}^2)^T & \dots & (\mathbf{t}^k)^T \end{bmatrix}$$

- 2. The parties invoke OT_m^k primitive:
 - $\underline{\mathcal{R}}$ sends $(\mathbf{m}_{i,0}, \mathbf{m}_{i,1}) = (\mathbf{t}^i, \mathbf{r} \oplus \mathbf{t}^i), 1 \le i \le k.$
 - \underline{S} receives with input **s**, i.e. S receives \mathbf{m}_{i,s_i} for every *i*. (Note that $\mathbf{m}_{i,b} = b\mathbf{r} \oplus \mathbf{t}^i$.)

IKNP Protocol (2)

3. Let Q denote the $m \times k$ matrix of values received by S where

$$Q = \begin{bmatrix} (\mathbf{m}_{1,s_1})^T & (\mathbf{m}_{2,s_2})^T & \dots & (\mathbf{m}_{k,s_k})^T \end{bmatrix}$$
$$= \begin{bmatrix} (s_1 \mathbf{r} \oplus \mathbf{t}^1)^T & (s_2 \mathbf{r} \oplus \mathbf{t}^2)^T & \dots & (s_k \mathbf{r} \oplus \mathbf{t}^k)^T \end{bmatrix}$$
$$= \begin{bmatrix} s_1 r_1 \oplus t_1^1 & s_2 r_1 \oplus t_2^1 & \dots & s_k r_1 \oplus t_1^k \\ s_1 r_2 \oplus t_2^1 & s_2 r_2 \oplus t_2^2 & \dots & s_k r_2 \oplus t_2^k \\ \vdots & \vdots & \ddots & \vdots \\ s_1 r_m \oplus t_m^1 & s_2 r_m \oplus t_m^2 & \dots & s_k r_m \oplus t_m^k \end{bmatrix}$$
$$= \begin{bmatrix} r_1 \mathbf{s} \oplus \mathbf{t}_1 \\ r_2 \mathbf{s} \oplus \mathbf{t}_2 \\ \vdots \\ r_m \mathbf{s} \oplus \mathbf{t}_m \end{bmatrix}$$

 \underline{S} sends $(y_{j,0}, y_{j,1})$, for $1 \leq j \leq m$, where $y_{j,0} = x_{j,0} \oplus H(j, \mathbf{q}_j)$ and $y_{j,1} = x_{j,1} \oplus H(j, \mathbf{q}_j \oplus \mathbf{s})$. (Note that $y_{j,b} = x_{j,b} \oplus H(j, q_j \oplus b\mathbf{s})$)

IKNP Protocol (3)

4. $\underline{\mathcal{R}}$ receives $(y_{j,0}, y_{j,1})$ and recovers x_{j,r_j} , the messages he intends to receive, from the following steps:

$$z_{j,r_j} = y_{j,r_j} \oplus H(j, \mathbf{t}_j)$$

= $[x_{j,r_j} \oplus H(j, q_j \oplus r_j \mathbf{s})] \oplus H(j, \mathbf{t}_j)$
= $x_{j,r_j} \oplus H(j, (r_j \mathbf{s} \oplus \mathbf{t}_j) \oplus r_j \mathbf{s}) \oplus H(j, \mathbf{t}_j)$
= $x_{j,r_j} \oplus H(j, \mathbf{t}_j), \oplus H(j, \mathbf{t}_j)$
= x_{j,r_j}

For the messages \mathcal{R} did not choose, they appear to be uniformly random bits because of the fact that \mathcal{R} possesses no knowledge of s:

$$z_{j,1-r_j} = y_{j,1-r_j} \oplus H(j, \mathbf{t}_j)$$

= $[x_{j,1-r_j} \oplus H(j, q_j \oplus (1-r_j)\mathbf{s})] \oplus H(j, \mathbf{t}_j)$
= $x_{j,1-r_j} \oplus H(j, (r_j\mathbf{s} \oplus \mathbf{t}_j) \oplus (1-r_j)\mathbf{s}) \oplus H(j, \mathbf{t}_j)$
= $x_{j,1-r_j} \oplus H(j, \mathbf{s} \oplus \mathbf{t}_j), \oplus H(j, \mathbf{t}_j)$

NNOB & ZDE Protocol

$$Q = \begin{bmatrix} (\mathbf{m}_{1,s_1})^T & (\mathbf{m}_{2,s_2})^T & \dots & (\mathbf{m}_{k,s_k})^T \end{bmatrix}$$
$$= \begin{bmatrix} (s_1\mathbf{r} \oplus \mathbf{t}^1)^T & (s_2\mathbf{r} \oplus \mathbf{t}^2)^T & \dots & (s_k\mathbf{r} \oplus \mathbf{t}^k)^T \end{bmatrix}$$
$$= \begin{bmatrix} s_1r_1 \oplus \mathbf{t}_1^1 & s_2r_1 \oplus t_2^2 & \dots & s_kr_1 \oplus t_1^k \\ s_1r_2 \oplus \mathbf{t}_2^1 & s_2r_2 \oplus t_2^2 & \dots & s_kr_2 \oplus \mathbf{t}_2^k \\ \vdots & \vdots & \ddots & \vdots \\ s_1r_m \oplus \mathbf{t}_m^1 & s_2r_m \oplus t_m^2 & \dots & s_kr_m \oplus \mathbf{t}_m^k \end{bmatrix}$$
$$= \begin{bmatrix} r_1\mathbf{s} \oplus \mathbf{t}_1 \\ r_2\mathbf{s} \oplus \mathbf{t}_2 \\ \vdots \\ r_m\mathbf{s} \oplus \mathbf{t}_m \end{bmatrix}$$

KK Protocol

 \mathcal{R} forms $m \times k$ matrices T_0, T_1 in the following way: - Choose $\mathbf{t}_{j,0}, \mathbf{t}_{j,1} \leftarrow \{0,1\}^k$ at random such that $\mathbf{t}_{j,0} \oplus \mathbf{t}_{j,1} = \mathbf{c}_{r_j}$. Let $\mathbf{t}_0^i, \mathbf{t}_1^i$ denote the *i*-th column of matrices T_0, T_1 respectively.

S forms $m \times k$ matrix Q such that the *i*-th column of Q is the vector \mathbf{q}^i . (Note $\mathbf{q}^i = \mathbf{t}_{s_i}^i$.) Let \mathbf{q}_j denote the *j*-th row of Q. (Note $\mathbf{q}_j = ((\mathbf{t}_{j,0} \oplus \mathbf{t}_{j,1}) \odot \mathbf{s}) \oplus \mathbf{t}_{j,0}$. Simplifying, $\mathbf{q}_j \oplus \mathbf{t}_{j,0} = \mathbf{c}_{r_j} \odot \mathbf{s}$.) For $j \in [m]$ and for every $0 \leq r < n$, S sends $y_{j,r} = x_{j,r} \oplus H(j, \mathbf{q}_j \oplus (\mathbf{c}_r \odot \mathbf{s}))$. For $j \in [m]$, \mathcal{R} recovers $z_j = y_{j,r_j} \oplus H(j, \mathbf{t}_{j,0})$.

Comparison

Protocol	Efficiency	Security Model	Assumptions
Beaver's	$\mathcal{O}\left(n \cdot poly(k)\right)$ (for semi-honest)	semi-honest or malicious; static or adaptive	one-way functions
IKNP	$\mathcal{O}(n) + \mathcal{O}(k)$	static semi-honest	correlation-robust
			hash function
NNOB	$\mathcal{O}(n) + \mathcal{O}(k)$	static malicious	random oracle,
			IKNP
ZDE	$\mathcal{O}(n) + \mathcal{O}(k)$	static malicious	homomorphic hash
			function, IKNP
KK	$\mathcal{O}(n/\log(k)) + \mathcal{O}(k)$	static semi-honest	random oracle

Conclusion: Assumptions

Assumptions

- Information-theoretic extension is impossible
- One-way function is the weakest possible assumption
- Random oracle is most efficient assumption

Conclusion: Security Models

Semi-honest vs Malicious

- Semi-honest is highly efficient
- Malicious is practical

Static vs Adaptive

- Static is highly efficient
- Adaptive is impractical

Conclusion: Length

Message Length

Possible to send shorter messages with improved efficiency

Number of underlying Ots

Impossible to base extension on log(k) OTs