Anonymous-Accountable Forums

Motivation

ANONYMITY

Protecting social activists since 73BC.

anonymity = bad behavior

Security Goals

- Identity (1) not compromised
 - Unless threshold number of regular users and moderators vote to unmask a user

- Authenticated messages
 - Unless the user sending the message has been unmasked

Primitives

- Public Key Encryption
- Digital Signatures
- Secret Sharing
 - Trivial
 - Threshold (n,k) secret sharing
 - Verifiable secret sharing

Secret Sharing

- Shamir defines (k,n) threshold secret sharing as dividing some data D into n pieces D_1, \ldots, D_n such that
- D is easily computable given k or more D_i pieces
- D is completely undetermined given fewer than k of the D_i pieces

Protocol

- Operations: setup, add user, post, vote to unmask
- Each user has (pk, sk), (pk, sk), and *I*
- Group decides on t_m, t_u, and who will be a moderator or a user (m > t_m, u > t_u) beforehand

Protocol - Setup

Each user does the following:

- 1. publish pk, pk
- 2. Encrypt / with pk, and publish
- 3. XOR pk_s with random string k_m ; Call the result k_{μ}
- 4. Distribute k_m and k_u among users with verifiable secret sharing (encrypt with recipient's pk_e):
 - (t_m, m) secret sharing for moderators
 - (t_u, u) secret sharing for regular users

Protocol - Add User

Follow the same procedure as setup, but with only one additional user

Each existing user gives the new user an additional share of their k_m or k_u

Protocol - Post

Poster publishes message signed with sk_s

Protocol - Vote

In order to vote to unmask a user, publish your share of k_m or k_u from that user's sk_s

If more than t_m moderators and t_u users vote to unmask a user, anyone can reconstruct the user's sk_s and decrypt *I*

Proof Sketch

- Goal: *I* not compromised unless there are enough votes from both users and moderators
 - Need sk
 - \circ need both k_m and k_u
 - need enough votes

(public-key crypto) (XOR) (Secret Sharing)

Proof Sketch

- Goal: posts are authenticated
 - messages can only be forged by negligible probability by one who doesn't have sk_s (Digital Signature)
 - sk_s is not made known unless there are enough votes from both regular users and moderators (from previous slide)

Drawbacks

- Morality assumption
- Threshold proportion shrinks as user population grows
- Need sizeable group to start forum
- What is identity?

Hope is that user/moderator structure helps mitigate the first two drawbacks

Sources

- A. Shamir, How to Share A Secret, CACM Vol. 22 No. 11, 1979
- Chor, Benny; Goldwasser, S.; Micali, S.; Awerbuch, Baruch, "Verifiable secret sharing and achieving simultaneity in the presence of faults," Foundations of Computer Science, 1985., 26th Annual Symposium on , vol., no., pp.383,395, 21-23 Oct. 1985
- Jonathan Katz , Yehuda Lindell, Introduction to Modern Cryptography, Chapman \& Hall/CRC, 2007
- <u>http://cdn.cpnwz.us/wp-content/uploads/2013/07/That-Was-Easy-Button.png</u>
- http://www.trulioo.com/wp-content/uploads/anonymity-3.jpg
- <u>http://venusinlivingcolor.files.wordpress.</u>
 <u>com/2012/11/633495140222736926_anonymity_xlarge.jpeg</u>