Program Obfuscation

Theory and Practice

Outline

- Introduction
- Theory
- Practice
- Future Work
- Conclusion

Introduction

- General idea
- Utility of program obfuscation
 - From the developer's perspective
 - From the user's perspective
- Parallels with message encryption
- Modernization of program obfuscation

Program obfuscation: Theory

- Definition of obfuscation
 - The syntactic requirements
 - The additional criteria
- Definition of an obfuscator
- Three classes of obfuscation
 - Virtual black box obfuscation
 - Differing-inputs obfuscation
 - Indistinguishability obfuscation

Virtual black box obfuscation

Genie icon created by James Keuning, The Noun Project

Differing-inputs obfuscation

- If there is an adversary A that can distinguish O(P₁) from O(P₂),
- then a second adversary A^{2} can find two inputs where the output of $O(P_{1})$ and $O(P_{2})$ differ.
- Not likely to exist.

Indistinguishability obfuscation

- There is a class of circuits C that computes a function f.
- For any two circuits C_1 , C_2 in C, a PPT adversary A cannot distinguish between $O(C_1)$ and $O(C_2)$.

Program obfuscation: Practice

- Uses of randomness
- Formalizations (i.e., the modernity of security)
- Threat model

Software dynamic translation

• Interrupt the normal execution process at runtime.

Software dynamic translation

• Randomize the instructions

Software dynamic translation

Encrypt blocks of instructions

N-Variant Systems

Future Work

• Return oriented programming.

Conclusion