Private Information Retrieval
PIR
S. Nemati

Department of Computer Science
University of Virginia

December 15, 2014



PIR and OT

Oblivious Transfer



PIR and OT

Oblivious Transfer

» sender who initially has n secrets



PIR and OT

Oblivious Transfer

» sender who initially has n secrets

> receiver who initially holds an index 1 < i< n



PIR and OT

Oblivious Transfer

» sender who initially has n secrets
> receiver who initially holds an index 1 < i< n

> At the end of the protocol the receiver knows just ith bit



PIR and OT

Oblivious Transfer

v

sender who initially has n secrets

v

receiver who initially holds an index 1 </ < n

v

At the end of the protocol the receiver knows just ith bit

the sender has no information about the index i

v



PIR and OT

Oblivious Transfer

» sender who initially has n secrets

> receiver who initially holds an index 1 < i< n

> At the end of the protocol the receiver knows just ith bit
> the sender has no information about the index i

» complexity is not important



PIR and OT

Oblivious Transfer

» sender who initially has n secrets

> receiver who initially holds an index 1 < i< n

> At the end of the protocol the receiver knows just ith bit
> the sender has no information about the index i

» complexity is not important

Single DB PIR



PIR and OT

Oblivious Transfer

» sender who initially has n secrets

> receiver who initially holds an index 1 < i< n

> At the end of the protocol the receiver knows just ith bit
> the sender has no information about the index i

» complexity is not important

Single DB PIR

» sender who initially has n bit



PIR and OT

Oblivious Transfer

» sender who initially has n secrets

> receiver who initially holds an index 1 < i< n

> At the end of the protocol the receiver knows just ith bit
> the sender has no information about the index i

» complexity is not important

Single DB PIR

» sender who initially has n bit

> receiver who initially holds an index 1 < i< n



PIR and OT

Oblivious Transfer

» sender who initially has n secrets

> receiver who initially holds an index 1 < i< n

> At the end of the protocol the receiver knows just ith bit
> the sender has no information about the index i

» complexity is not important

Single DB PIR

» sender who initially has n bit
> receiver who initially holds an index 1 < i< n

» At the end of the protocol the receiver knows ith bit



PIR and OT

Oblivious Transfer

» sender who initially has n secrets

> receiver who initially holds an index 1 < i< n

> At the end of the protocol the receiver knows just ith bit
> the sender has no information about the index i

» complexity is not important

Single DB PIR

» sender who initially has n bit
> receiver who initially holds an index 1 < i< n
» At the end of the protocol the receiver knows ith bit

» the sender has no information about the index i



PIR and OT

Oblivious Transfer

» sender who initially has n secrets

> receiver who initially holds an index 1 < i< n

> At the end of the protocol the receiver knows just ith bit
> the sender has no information about the index i

» complexity is not important

Single DB PIR

» sender who initially has n bit

> receiver who initially holds an index 1 < i< n

» At the end of the protocol the receiver knows ith bit
» the sender has no information about the index i

> complexity is important



single-DB

» TDP =1-DB (n — o(n)) -bit PIR

"Homomorphic Encryption Scheme



single-DB

» TDP =1-DB (n — o(n)) -bit PIR
» ( n—o(n)) -bit PIR = OT

"Homomorphic Encryption Scheme



single-DB

» TDP =1-DB (n — o(n)) -bit PIR
» ( n—o(n)) -bit PIR = OT
» OT = One-Way function

"Homomorphic Encryption Scheme



single-DB

v

TDP =1-DB (n — o(n)) -bit PIR
( n—o(n)) -bit PIR = OT

» OT = One-Way function
One-Way function = 2-DB (n°)

v

v

"Homomorphic Encryption Scheme



single-DB

v

TDP =1-DB (n — o(n)) -bit PIR
( n—o(n)) -bit PIR = OT

» OT = One-Way function
One-Way function = 2-DB (n°)
HES! =1-DB(n°)-bit PIR

v

v

v

"Homomorphic Encryption Scheme



Definition

» We model a database as an n — bit string x = x1,x2, - -+ , X,
together with a computational agent



Definition

» We model a database as an n — bit string x = x1, xp, - - -

together with a computational agent
» agent is Turing Machine ( Algorithm)
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» A 1— round k — DB Information Retrieval Scheme With
x € {0,1}" and k databases has the following form:

0.There are k copies of the database which all have
X = X1, X0, "+, Xn.

1. Alice wants to know x;.

2. Alice flips coins and, based on the coin flips and /,
computes (query) strings g1, g2, * - - , G-

3. For all j 1 < j < k, DBjsends back a (answer)
string ANS; (q;j).

4. Using the value of /, the coin flips, and the
ANS;(q;), Alice computes x;
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k
» The complexity of the PIR scheme is )" |qj| + |ANS;(q;)|.
=1
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» A k — DB PIR Scheme with x € {0,1}" is an information
retrieval scheme such that, after the query is made and
answered, the database does not have any information about
what 7 is

» they shouldn’t can distinguish between transcript of / and j
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Theorem
there is a 4 — DB, O(+/n)-bit PIR scheme
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proof

» Each index of the database is represented as an ordered pair
(i17 12)
» i1 and fp are written in base [1/n]

Xy o X

Xvn1) " X/

» databases are labeled DByg , DBy1 , DB1p and DBjq
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proof

Alice wants to know bit x(;, ;)

Alice generates o , 7 € {0, 1}\/5

Alice then generates two additional /n bits strings from the
first two strings: o/ = o ® i and7 =7 D i

Alice sends two strings to each database

DBygreceives o, 7 . DBy; receives ocandt’ . DBjgreceives
o’andt . DBj; receives o’and7’

Doo sends @ (j)=1,7(jp)=1Xj1,j2

Doy sends @ (j;)=1,7(j)=1Xj1,j2

D1 sends @,1(j;)=1,7(j»)=1Xj1.j2

D11 sends @y(jy)=1,r(j2)=1%1.j2

Alice XORs the four bits
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proof

X1y o X1,vm)

X(id)

Xvn1) 0 Xn/n)

» Since xj1,2 is the only bit that appeared an odd number of
times, the result is xj i

» Note that the number of bits sent is 8y/n + 4
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Theorem )
For all k € N there is a k-DB, o((k log k)n'ek ) -bit PIR scheme.

Theorem .
For all k € N there is a k-DB, o((k log k)nieek+ioglogk ) -bjt PIR
scheme

Theorem .
For all k there is a k-DB O(k3(n2-1)) -bit scheme.

Theorem
One-way Functions Imply O (n°) 2-DB PIRs
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> Definition: Let z, m € N. Assume z is relatively prime to m.
The number z is a Quadratic Residue mod m if there exists a
number a such that a2 = z mod m.

» Definition: The Quadratic Residue Problem is, given (z,m),
determine if z is a quadratic residue mod m

Theorem
Assume that the quadratic residue problem is ‘hard’ for m the
product of two primes and |m| > n® . Then there exists a 1-DB,

O(nz*9) -bit PIR scheme



Thank you



