Private Information Retrieval PIR

S. Nemati

Department of Computer Science University of Virginia

December 15, 2014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$\mathsf{PIR} \text{ and } \mathsf{OT}$

Oblivious Transfer

Oblivious Transfer

sender who initially has n secrets

Oblivious Transfer

- sender who initially has n secrets
- receiver who initially holds an index $1 \leqslant i \leqslant n$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Oblivious Transfer

- sender who initially has n secrets
- receiver who initially holds an index $1 \leqslant i \leqslant n$
- > At the end of the protocol the receiver knows just *i*th bit

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Oblivious Transfer

- sender who initially has n secrets
- receiver who initially holds an index $1 \leq i \leq n$
- At the end of the protocol the receiver knows just *i*th bit

the sender has no information about the index i

Oblivious Transfer

- sender who initially has n secrets
- receiver who initially holds an index $1 \leqslant i \leqslant n$
- At the end of the protocol the receiver knows just *i*th bit

- the sender has no information about the index i
- complexity is not important

Oblivious Transfer

- sender who initially has n secrets
- receiver who initially holds an index $1 \leq i \leq n$
- At the end of the protocol the receiver knows just *i*th bit

- the sender has no information about the index i
- complexity is not important

Single DB PIR

Oblivious Transfer

- sender who initially has n secrets
- receiver who initially holds an index $1 \leqslant i \leqslant n$
- At the end of the protocol the receiver knows just *i*th bit

- the sender has no information about the index i
- complexity is not important

Single DB PIR

sender who initially has n bit

Oblivious Transfer

- sender who initially has n secrets
- receiver who initially holds an index $1 \leqslant i \leqslant n$
- > At the end of the protocol the receiver knows just *i*th bit

- the sender has no information about the index i
- complexity is not important

Single DB PIR

- sender who initially has n bit
- receiver who initially holds an index $1 \leqslant i \leqslant n$

Oblivious Transfer

- sender who initially has n secrets
- receiver who initially holds an index $1 \leqslant i \leqslant n$
- > At the end of the protocol the receiver knows just *i*th bit
- the sender has no information about the index i
- complexity is not important

Single DB PIR

- sender who initially has n bit
- receiver who initially holds an index $1 \leqslant i \leqslant n$
- At the end of the protocol the receiver knows ith bit

Oblivious Transfer

- sender who initially has n secrets
- receiver who initially holds an index $1 \leqslant i \leqslant n$
- > At the end of the protocol the receiver knows just *i*th bit
- the sender has no information about the index i
- complexity is not important

Single DB PIR

- sender who initially has n bit
- receiver who initially holds an index $1 \leqslant i \leqslant n$
- At the end of the protocol the receiver knows ith bit

the sender has no information about the index i

Oblivious Transfer

- sender who initially has n secrets
- receiver who initially holds an index $1 \leqslant i \leqslant n$
- > At the end of the protocol the receiver knows just *i*th bit
- the sender has no information about the index i
- complexity is not important

Single DB PIR

- sender who initially has n bit
- receiver who initially holds an index $1 \leqslant i \leqslant n$
- At the end of the protocol the receiver knows ith bit
- the sender has no information about the index i
- complexity is important

▶ TDP \Rightarrow 1-DB (n - o(n)) -bit PIR

¹Homomorphic Encryption Scheme

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

► TDP ⇒1-DB
$$(n - o(n))$$
 -bit PIR
► $(n - o(n))$ -bit PIR ⇒ OT

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▶ TDP ⇒1-DB (n - o(n)) -bit PIR

•
$$(n - o(n))$$
 -bit PIR \Rightarrow OT

• $OT \Rightarrow One-Way$ function

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

¹Homomorphic Encryption Scheme

- ▶ TDP \Rightarrow 1-DB (n o(n)) -bit PIR
- (n o(n)) -bit PIR \Rightarrow OT
- OT \Rightarrow One-Way function
- One-Way function \Rightarrow 2-DB (n^{ϵ})

- ▶ TDP \Rightarrow 1-DB (n o(n)) -bit PIR
- (n o(n)) -bit PIR \Rightarrow OT
- OT \Rightarrow One-Way function
- One-Way function \Rightarrow 2-DB (n^{ϵ})
- ▶ $HES^1 \Rightarrow 1-DB(n^{\epsilon})$ -bit PIR

▶ We model a database as an *n* − bit string *x* = *x*₁, *x*₂, · · · , *x_n* together with a computational agent

(ロ)、(型)、(E)、(E)、 E) の(の)

▶ We model a database as an *n* − bit string *x* = *x*₁, *x*₂, · · · , *x_n* together with a computational agent

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

agent is Turing Machine (Algorithm)

A 1 − round k − DB Information Retrieval Scheme With x ∈ {0,1}ⁿ and k databases has the following form:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

- A 1 − round k − DB Information Retrieval Scheme With x ∈ {0,1}ⁿ and k databases has the following form:
 - 0. There are k copies of the database which all have $x = x_1, x_2, \dots, x_n$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- A 1 − round k − DB Information Retrieval Scheme With x ∈ {0,1}ⁿ and k databases has the following form:
 - 0. There are k copies of the database which all have $x = x_1, x_2, \cdots, x_n$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1. Alice wants to know x_i .

- A 1 − round k − DB Information Retrieval Scheme With x ∈ {0,1}ⁿ and k databases has the following form:
 - 0. There are k copies of the database which all have $x = x_1, x_2, \cdots, x_n$.
 - 1. Alice wants to know x_i .
 - 2. Alice flips coins and, based on the coin flips and *i*, computes (query) strings q_1, q_2, \dots, q_k .

- A 1 − round k − DB Information Retrieval Scheme With x ∈ {0,1}ⁿ and k databases has the following form:
 - 0. There are k copies of the database which all have $x = x_1, x_2, \cdots, x_n$.
 - 1. Alice wants to know x_i .
 - 2. Alice flips coins and, based on the coin flips and *i*, computes (query) strings q_1, q_2, \dots, q_k .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

3. For all $j \ 1 \le j \le k$, DB_j sends back a (answer) string ANS_j (q_j).

- A 1 − round k − DB Information Retrieval Scheme With x ∈ {0,1}ⁿ and k databases has the following form:
 - 0. There are k copies of the database which all have $x = x_1, x_2, \cdots, x_n$.
 - 1. Alice wants to know x_i .
 - 2. Alice flips coins and, based on the coin flips and *i*, computes (query) strings q_1, q_2, \dots, q_k .
 - 3. For all $j \ 1 \le j \le k$, DB_j sends back a (answer) string ANS_j (q_j).
 - 4. Using the value of *i*, the coin flips, and the $ANS_j(q_j)$, Alice computes x_i

• The complexity of the PIR scheme is $\sum_{j=1}^{k} |q_j| + |ANS_j(q_j)|$.

(ロ)、(型)、(E)、(E)、 E) の(の)

two model of privacy

two model of privacy
DB unbounded
DB bounded

▶ A k - DB PIR Scheme with $x \in \{0, 1\}^n$ is an information retrieval scheme such that, after the query is made and answered, the database does not have any information about what *i* is

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

- A k − DB PIR Scheme with x ∈ {0,1}ⁿ is an information retrieval scheme such that, after the query is made and answered, the database does not have any information about what i is
- they shouldn't can distinguish between transcript of i and j

Theorem

Theorem there is a 4 - DB, $O(\sqrt{n})$ -bit PIR scheme

Each index of the database is represented as an ordered pair (i₁, i₂)

- Each index of the database is represented as an ordered pair (*i*₁, *i*₂)
- i_1 and i_2 are written in base $\lceil \sqrt{n} \rceil$

proof

 Each index of the database is represented as an ordered pair (i₁, i₂)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

• i_1 and i_2 are written in base $\lceil \sqrt{n} \rceil$

 $\begin{array}{cccc} x_{(1,1)} & \cdots & x_{(1,\sqrt{n})} \\ \vdots & \vdots & \vdots \\ x_{(\sqrt{n},1)} & \cdots & x_{(\sqrt{n},\sqrt{n})} \end{array}$

proof

- Each index of the database is represented as an ordered pair (*i*₁, *i*₂)
- i_1 and i_2 are written in base $\lceil \sqrt{n} \rceil$

 $\begin{array}{cccc} x_{(1,1)} & \cdots & x_{(1,\sqrt{n})} \\ \vdots & \vdots & \vdots \\ x_{(\sqrt{n},1)} & \cdots & x_{(\sqrt{n},\sqrt{n})} \end{array}$

 \blacktriangleright databases are labeled DB_{00} , DB_{01} , DB_{10} and DB_{11}

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <
• Alice wants to know bit $x_{(i_1,i_2)}$

- Alice wants to know bit $x_{(i_1,i_2)}$
- \blacktriangleright Alice generates σ , $\tau \in \{\mathsf{0}$, $1\}^{\sqrt{n}}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Alice wants to know bit $x_{(i_1,i_2)}$
- Alice generates σ , $au \in \{\mathsf{0} \ , \ 1\}^{\sqrt{n}}$
- ► Alice then generates two additional \sqrt{n} bits strings from the first two strings: $\sigma' = \sigma \oplus i_1$ and $\tau' = \tau \oplus i_2$

- Alice wants to know bit $x_{(i_1,i_2)}$
- Alice generates σ , $au \in \{0 \ , \ 1\}^{\sqrt{n}}$
- ► Alice then generates two additional \sqrt{n} bits strings from the first two strings: $\sigma' = \sigma \oplus i_1$ and $\tau' = \tau \oplus i_2$

Alice sends two strings to each database

- Alice wants to know bit $x_{(i_1,i_2)}$
- Alice generates σ , $au \in \{0 \ , \ 1\}^{\sqrt{n}}$
- Alice then generates two additional √n bits strings from the first two strings: σ' = σ ⊕ i₁ andτ' = τ ⊕ i₂
- Alice sends two strings to each database
- DB₀₀receives σ, τ . DB₀₁ receives σandτ' . DB₁₀receives σ'andτ . DB₁₁ receives σ'andτ'

- Alice wants to know bit $x_{(i_1,i_2)}$
- Alice generates σ , $au \in \{0 \ , \ 1\}^{\sqrt{n}}$
- ► Alice then generates two additional \sqrt{n} bits strings from the first two strings: $\sigma' = \sigma \oplus i_1$ and $\tau' = \tau \oplus i_2$
- Alice sends two strings to each database
- ► DB_{00} receives σ, τ . DB_{01} receives σ and τ' . DB_{10} receives σ' and τ . DB_{11} receives σ' and τ'

• D_{00} sends $\bigoplus_{\sigma(j_1)=1,\tau(j_2)=1} x_{j1,j2}$

- Alice wants to know bit $x_{(i_1,i_2)}$
- Alice generates σ , $au \in \{0 \ , \ 1\}^{\sqrt{n}}$
- Alice then generates two additional √n bits strings from the first two strings: σ' = σ ⊕ i₁ andτ' = τ ⊕ i₂
- Alice sends two strings to each database
- ► DB_{00} receives σ, τ . DB_{01} receives σ and τ' . DB_{10} receives σ' and τ . DB_{11} receives σ' and τ'

- D_{00} sends $\bigoplus_{\sigma(j_1)=1,\tau(j_2)=1} x_{j_1,j_2}$
- D_{01} sends $\bigoplus_{\sigma(j_1)=1,\tau'(j_2)=1} x_{j1,j2}$

- Alice wants to know bit $x_{(i_1,i_2)}$
- Alice generates σ , $au \in \{0 \ , \ 1\}^{\sqrt{n}}$
- Alice then generates two additional √n bits strings from the first two strings: σ' = σ ⊕ i₁ andτ' = τ ⊕ i₂
- Alice sends two strings to each database
- ► DB_{00} receives σ, τ . DB_{01} receives σ and τ' . DB_{10} receives σ' and τ . DB_{11} receives σ' and τ'

(日) (同) (三) (三) (三) (○) (○)

- D_{00} sends $\bigoplus_{\sigma(j_1)=1,\tau(j_2)=1} x_{j1,j2}$
- D_{01} sends $\bigoplus_{\sigma(j_1)=1,\tau'(j_2)=1} x_{j1,j2}$
- D_{10} sends $\bigoplus_{\sigma'(j_1)=1,\tau(j_2)=1} x_{j1,j2}$

- Alice wants to know bit x_(i1,i2)
- Alice generates σ , $au \in \{0 \ , \ 1\}^{\sqrt{n}}$
- Alice then generates two additional √n bits strings from the first two strings: σ' = σ ⊕ i₁ andτ' = τ ⊕ i₂
- Alice sends two strings to each database
- ► DB_{00} receives σ, τ . DB_{01} receives σ and τ' . DB_{10} receives σ' and τ . DB_{11} receives σ' and τ'

(日) (同) (三) (三) (三) (○) (○)

- D_{00} sends $\bigoplus_{\sigma(j_1)=1,\tau(j_2)=1} x_{j1,j2}$
- D_{01} sends $\bigoplus_{\sigma(j_1)=1,\tau'(j_2)=1} x_{j1,j2}$
- D_{10} sends $\bigoplus_{\sigma'(j_1)=1,\tau(j_2)=1} x_{j1,j2}$
- D_{11} sends $\bigoplus_{\sigma'(j_1)=1,\tau'(j_2)=1} x_{j1,j2}$

- Alice wants to know bit $x_{(i_1,i_2)}$
- Alice generates σ , $au \in \{0 \ , \ 1\}^{\sqrt{n}}$
- Alice then generates two additional √n bits strings from the first two strings: σ' = σ ⊕ i₁ andτ' = τ ⊕ i₂
- Alice sends two strings to each database
- ► DB_{00} receives σ, τ . DB_{01} receives σ and τ' . DB_{10} receives σ' and τ . DB_{11} receives σ' and τ'

(日) (同) (三) (三) (三) (○) (○)

- D_{00} sends $\bigoplus_{\sigma(j_1)=1,\tau(j_2)=1} x_{j1,j2}$
- D_{01} sends $\bigoplus_{\sigma(j_1)=1,\tau'(j_2)=1} x_{j1,j2}$
- D_{10} sends $\oplus_{\sigma'(j_1)=1,\tau(j_2)=1} x_{j1,j2}$
- D_{11} sends $\bigoplus_{\sigma'(j_1)=1,\tau'(j_2)=1} x_{j1,j2}$
- Alice XORs the four bits

$\begin{array}{cccc} x_{(1,1)} & \cdots & x_{(1,\sqrt{n})} \\ \vdots & x_{(i,j)} & \vdots \\ x_{(\sqrt{n},1)} & \cdots & x_{(\sqrt{n},\sqrt{n})} \end{array}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$\begin{array}{cccc} x_{(1,1)} & \cdots & x_{(1,\sqrt{n})} \\ \vdots & x_{(i,j)} & \vdots \\ x_{(\sqrt{n},1)} & \cdots & x_{(\sqrt{n},\sqrt{n})} \end{array}$

Since x_{i1,i2} is the only bit that appeared an odd number of times, the result is x_{i1,i2}

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- $\begin{array}{cccc} x_{(1,1)} & \cdots & x_{(1,\sqrt{n})} \\ \vdots & x_{(i,j)} & \vdots \\ x_{(\sqrt{n},1)} & \cdots & x_{(\sqrt{n},\sqrt{n})} \end{array}$
 - Since x_{i1,i2} is the only bit that appeared an odd number of times, the result is x_{i1,i2}

• Note that the number of bits sent is $8\sqrt{n} + 4$

Theorem For all $k \in N$ there is a k-DB, $o((k \log k)n^{\frac{1}{\log k}})$ -bit PIR scheme.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem For all $k \in N$ there is a k-DB, $o((k \log k)n^{\frac{1}{\log k}})$ -bit PIR scheme.

Theorem

For all $k \in N$ there is a k-DB, $o((k \log k)n^{\frac{1}{\log k + \log \log k}})$ -bit PIR scheme

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem For all $k \in N$ there is a k-DB, $o((k \log k)n^{\frac{1}{\log k}})$ -bit PIR scheme.

Theorem

For all $k \in N$ there is a k-DB, $o((k \log k)n^{\frac{1}{\log k + \log \log k}})$ -bit PIR scheme

Theorem

For all k there is a k-DB $O(k^3(n^{\frac{1}{2k-1}}))$ -bit scheme.

Theorem For all $k \in N$ there is a k-DB, $o((k \log k)n^{\frac{1}{\log k}})$ -bit PIR scheme.

Theorem

For all $k \in N$ there is a k-DB, $o((k \log k)n^{\frac{1}{\log k + \log \log k}})$ -bit PIR scheme

Theorem

For all k there is a k-DB $O(k^3(n^{\frac{1}{2k-1}}))$ -bit scheme.

Theorem

One-way Functions Imply O (n^{ϵ}) 2-DB PIRs

Definition: Let z, m ∈ N. Assume z is relatively prime to m. The number z is a Quadratic Residue mod m if there exists a number a such that a² ≡ z mod m.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Definition: Let z, m ∈ N. Assume z is relatively prime to m. The number z is a Quadratic Residue mod m if there exists a number a such that a² ≡ z mod m.
- Definition: The Quadratic Residue Problem is, given (z,m), determine if z is a quadratic residue mod m

- Definition: Let z, m ∈ N. Assume z is relatively prime to m. The number z is a Quadratic Residue mod m if there exists a number a such that a² ≡ z mod m.
- Definition: The Quadratic Residue Problem is, given (z,m), determine if z is a quadratic residue mod m

Assume that the quadratic residue problem is 'hard' for m the product of two primes and $|m| \ge n^{\delta}$. Then there exists a 1-DB, $O(n^{\frac{1}{2}+\delta})$ -bit PIR scheme

Thank you