
Private Information Retrieval
PIR

S. Nemati

Department of Computer Science
University of Virginia

December 15, 2014

PIR and OT

Oblivious Transfer

I sender who initially has n secrets

I receiver who initially holds an index 1 6 i 6 n

I At the end of the protocol the receiver knows just ith bit

I the sender has no information about the index i

I complexity is not important

Single DB PIR

I sender who initially has n bit

I receiver who initially holds an index 1 6 i 6 n

I At the end of the protocol the receiver knows ith bit

I the sender has no information about the index i

I complexity is important

PIR and OT

Oblivious Transfer

I sender who initially has n secrets

I receiver who initially holds an index 1 6 i 6 n

I At the end of the protocol the receiver knows just ith bit

I the sender has no information about the index i

I complexity is not important

Single DB PIR

I sender who initially has n bit

I receiver who initially holds an index 1 6 i 6 n

I At the end of the protocol the receiver knows ith bit

I the sender has no information about the index i

I complexity is important

PIR and OT

Oblivious Transfer

I sender who initially has n secrets

I receiver who initially holds an index 1 6 i 6 n

I At the end of the protocol the receiver knows just ith bit

I the sender has no information about the index i

I complexity is not important

Single DB PIR

I sender who initially has n bit

I receiver who initially holds an index 1 6 i 6 n

I At the end of the protocol the receiver knows ith bit

I the sender has no information about the index i

I complexity is important

PIR and OT

Oblivious Transfer

I sender who initially has n secrets

I receiver who initially holds an index 1 6 i 6 n

I At the end of the protocol the receiver knows just ith bit

I the sender has no information about the index i

I complexity is not important

Single DB PIR

I sender who initially has n bit

I receiver who initially holds an index 1 6 i 6 n

I At the end of the protocol the receiver knows ith bit

I the sender has no information about the index i

I complexity is important

PIR and OT

Oblivious Transfer

I sender who initially has n secrets

I receiver who initially holds an index 1 6 i 6 n

I At the end of the protocol the receiver knows just ith bit

I the sender has no information about the index i

I complexity is not important

Single DB PIR

I sender who initially has n bit

I receiver who initially holds an index 1 6 i 6 n

I At the end of the protocol the receiver knows ith bit

I the sender has no information about the index i

I complexity is important

PIR and OT

Oblivious Transfer

I sender who initially has n secrets

I receiver who initially holds an index 1 6 i 6 n

I At the end of the protocol the receiver knows just ith bit

I the sender has no information about the index i

I complexity is not important

Single DB PIR

I sender who initially has n bit

I receiver who initially holds an index 1 6 i 6 n

I At the end of the protocol the receiver knows ith bit

I the sender has no information about the index i

I complexity is important

PIR and OT

Oblivious Transfer

I sender who initially has n secrets

I receiver who initially holds an index 1 6 i 6 n

I At the end of the protocol the receiver knows just ith bit

I the sender has no information about the index i

I complexity is not important

Single DB PIR

I sender who initially has n bit

I receiver who initially holds an index 1 6 i 6 n

I At the end of the protocol the receiver knows ith bit

I the sender has no information about the index i

I complexity is important

PIR and OT

Oblivious Transfer

I sender who initially has n secrets

I receiver who initially holds an index 1 6 i 6 n

I At the end of the protocol the receiver knows just ith bit

I the sender has no information about the index i

I complexity is not important

Single DB PIR

I sender who initially has n bit

I receiver who initially holds an index 1 6 i 6 n

I At the end of the protocol the receiver knows ith bit

I the sender has no information about the index i

I complexity is important

PIR and OT

Oblivious Transfer

I sender who initially has n secrets

I receiver who initially holds an index 1 6 i 6 n

I At the end of the protocol the receiver knows just ith bit

I the sender has no information about the index i

I complexity is not important

Single DB PIR

I sender who initially has n bit

I receiver who initially holds an index 1 6 i 6 n

I At the end of the protocol the receiver knows ith bit

I the sender has no information about the index i

I complexity is important

PIR and OT

Oblivious Transfer

I sender who initially has n secrets

I receiver who initially holds an index 1 6 i 6 n

I At the end of the protocol the receiver knows just ith bit

I the sender has no information about the index i

I complexity is not important

Single DB PIR

I sender who initially has n bit

I receiver who initially holds an index 1 6 i 6 n

I At the end of the protocol the receiver knows ith bit

I the sender has no information about the index i

I complexity is important

PIR and OT

Oblivious Transfer

I sender who initially has n secrets

I receiver who initially holds an index 1 6 i 6 n

I At the end of the protocol the receiver knows just ith bit

I the sender has no information about the index i

I complexity is not important

Single DB PIR

I sender who initially has n bit

I receiver who initially holds an index 1 6 i 6 n

I At the end of the protocol the receiver knows ith bit

I the sender has no information about the index i

I complexity is important

PIR and OT

Oblivious Transfer

I sender who initially has n secrets

I receiver who initially holds an index 1 6 i 6 n

I At the end of the protocol the receiver knows just ith bit

I the sender has no information about the index i

I complexity is not important

Single DB PIR

I sender who initially has n bit

I receiver who initially holds an index 1 6 i 6 n

I At the end of the protocol the receiver knows ith bit

I the sender has no information about the index i

I complexity is important

single-DB

I TDP ⇒1-DB (n − o(n)) -bit PIR

I (n − o(n)) -bit PIR ⇒ OT

I OT ⇒ One-Way function

I One-Way function ⇒ 2-DB (nε)

I HES1 ⇒1-DB(nε)-bit PIR

1Homomorphic Encryption Scheme

single-DB

I TDP ⇒1-DB (n − o(n)) -bit PIR

I (n − o(n)) -bit PIR ⇒ OT

I OT ⇒ One-Way function

I One-Way function ⇒ 2-DB (nε)

I HES1 ⇒1-DB(nε)-bit PIR

1Homomorphic Encryption Scheme

single-DB

I TDP ⇒1-DB (n − o(n)) -bit PIR

I (n − o(n)) -bit PIR ⇒ OT

I OT ⇒ One-Way function

I One-Way function ⇒ 2-DB (nε)

I HES1 ⇒1-DB(nε)-bit PIR

1Homomorphic Encryption Scheme

single-DB

I TDP ⇒1-DB (n − o(n)) -bit PIR

I (n − o(n)) -bit PIR ⇒ OT

I OT ⇒ One-Way function

I One-Way function ⇒ 2-DB (nε)

I HES1 ⇒1-DB(nε)-bit PIR

1Homomorphic Encryption Scheme

single-DB

I TDP ⇒1-DB (n − o(n)) -bit PIR

I (n − o(n)) -bit PIR ⇒ OT

I OT ⇒ One-Way function

I One-Way function ⇒ 2-DB (nε)

I HES1 ⇒1-DB(nε)-bit PIR

1Homomorphic Encryption Scheme

Definition

I We model a database as an n − bit string x = x1, x2, · · · , xn
together with a computational agent

I agent is Turing Machine (Algorithm)

Definition

I We model a database as an n − bit string x = x1, x2, · · · , xn
together with a computational agent

I agent is Turing Machine (Algorithm)

Definition

I A 1− round k − DB Information Retrieval Scheme With
x ∈ {0, 1}n and k databases has the following form:

0.There are k copies of the database which all have
x = x1, x2, · · · , xn.

1. Alice wants to know xi .

2. Alice flips coins and, based on the coin flips and i ,
computes (query) strings q1, q2, · · · , qk .

3. For all j 1 6 j 6 k ,DBjsends back a (answer)
string ANSj (qj).

4. Using the value of i , the coin flips, and the
ANSj(qj), Alice computes xi

Definition

I A 1− round k − DB Information Retrieval Scheme With
x ∈ {0, 1}n and k databases has the following form:

0.There are k copies of the database which all have
x = x1, x2, · · · , xn.

1. Alice wants to know xi .

2. Alice flips coins and, based on the coin flips and i ,
computes (query) strings q1, q2, · · · , qk .

3. For all j 1 6 j 6 k ,DBjsends back a (answer)
string ANSj (qj).

4. Using the value of i , the coin flips, and the
ANSj(qj), Alice computes xi

Definition

I A 1− round k − DB Information Retrieval Scheme With
x ∈ {0, 1}n and k databases has the following form:

0.There are k copies of the database which all have
x = x1, x2, · · · , xn.

1. Alice wants to know xi .

2. Alice flips coins and, based on the coin flips and i ,
computes (query) strings q1, q2, · · · , qk .

3. For all j 1 6 j 6 k ,DBjsends back a (answer)
string ANSj (qj).

4. Using the value of i , the coin flips, and the
ANSj(qj), Alice computes xi

Definition

I A 1− round k − DB Information Retrieval Scheme With
x ∈ {0, 1}n and k databases has the following form:

0.There are k copies of the database which all have
x = x1, x2, · · · , xn.

1. Alice wants to know xi .

2. Alice flips coins and, based on the coin flips and i ,
computes (query) strings q1, q2, · · · , qk .

3. For all j 1 6 j 6 k ,DBjsends back a (answer)
string ANSj (qj).

4. Using the value of i , the coin flips, and the
ANSj(qj), Alice computes xi

Definition

I A 1− round k − DB Information Retrieval Scheme With
x ∈ {0, 1}n and k databases has the following form:

0.There are k copies of the database which all have
x = x1, x2, · · · , xn.

1. Alice wants to know xi .

2. Alice flips coins and, based on the coin flips and i ,
computes (query) strings q1, q2, · · · , qk .

3. For all j 1 6 j 6 k ,DBjsends back a (answer)
string ANSj (qj).

4. Using the value of i , the coin flips, and the
ANSj(qj), Alice computes xi

Definition

I A 1− round k − DB Information Retrieval Scheme With
x ∈ {0, 1}n and k databases has the following form:

0.There are k copies of the database which all have
x = x1, x2, · · · , xn.

1. Alice wants to know xi .

2. Alice flips coins and, based on the coin flips and i ,
computes (query) strings q1, q2, · · · , qk .

3. For all j 1 6 j 6 k ,DBjsends back a (answer)
string ANSj (qj).

4. Using the value of i , the coin flips, and the
ANSj(qj), Alice computes xi

Definition

I The complexity of the PIR scheme is
k∑

j=1
|qj |+ |ANSj(qj)|.

Definition

I two model of privacy

DB unbounded

DB bounded

Definition

I two model of privacy

DB unbounded

DB bounded

Definition

I A k − DB PIR Scheme with x ∈ {0, 1}n is an information
retrieval scheme such that, after the query is made and
answered, the database does not have any information about
what i is

I they shouldn’t can distinguish between transcript of i and j

Definition

I A k − DB PIR Scheme with x ∈ {0, 1}n is an information
retrieval scheme such that, after the query is made and
answered, the database does not have any information about
what i is

I they shouldn’t can distinguish between transcript of i and j

Theorem

Theorem
there is a 4− DB, O(

√
n)-bit PIR scheme

proof

I Each index of the database is represented as an ordered pair
(i1, i2)

I i1 and i2 are written in base d
√
ne

x(1,1) · · · x(1,
√
n)

...
...

...
x(

√
n,1) · · · x(

√
n,
√
n)

I databases are labeled DB00 , DB01 , DB10 and DB11

proof

I Each index of the database is represented as an ordered pair
(i1, i2)

I i1 and i2 are written in base d
√
ne

x(1,1) · · · x(1,
√
n)

...
...

...
x(

√
n,1) · · · x(

√
n,
√
n)

I databases are labeled DB00 , DB01 , DB10 and DB11

proof

I Each index of the database is represented as an ordered pair
(i1, i2)

I i1 and i2 are written in base d
√
ne

x(1,1) · · · x(1,
√
n)

...
...

...
x(

√
n,1) · · · x(

√
n,
√
n)

I databases are labeled DB00 , DB01 , DB10 and DB11

proof

I Each index of the database is represented as an ordered pair
(i1, i2)

I i1 and i2 are written in base d
√
ne

x(1,1) · · · x(1,
√
n)

...
...

...
x(

√
n,1) · · · x(

√
n,
√
n)

I databases are labeled DB00 , DB01 , DB10 and DB11

proof

I Alice wants to know bit x(i1,i2)

I Alice generates σ , τ ∈ {0 , 1}
√
n

I Alice then generates two additional
√
n bits strings from the

first two strings: σ′ = σ ⊕ i1 andτ ′ = τ ⊕ i2
I Alice sends two strings to each database

I DB00receives σ, τ . DB01 receives σandτ ′ . DB10receives
σ′andτ . DB11 receives σ′andτ ′

I D00 sends ⊕σ(j1)=1,τ(j2)=1xj1,j2
I D01 sends ⊕σ(j1)=1,τ ′(j2)=1xj1,j2
I D10 sends ⊕σ′(j1)=1,τ(j2)=1xj1,j2
I D11 sends ⊕σ′(j1)=1,τ ′(j2)=1xj1,j2
I Alice XORs the four bits

proof

I Alice wants to know bit x(i1,i2)

I Alice generates σ , τ ∈ {0 , 1}
√
n

I Alice then generates two additional
√
n bits strings from the

first two strings: σ′ = σ ⊕ i1 andτ ′ = τ ⊕ i2
I Alice sends two strings to each database

I DB00receives σ, τ . DB01 receives σandτ ′ . DB10receives
σ′andτ . DB11 receives σ′andτ ′

I D00 sends ⊕σ(j1)=1,τ(j2)=1xj1,j2
I D01 sends ⊕σ(j1)=1,τ ′(j2)=1xj1,j2
I D10 sends ⊕σ′(j1)=1,τ(j2)=1xj1,j2
I D11 sends ⊕σ′(j1)=1,τ ′(j2)=1xj1,j2
I Alice XORs the four bits

proof

I Alice wants to know bit x(i1,i2)

I Alice generates σ , τ ∈ {0 , 1}
√
n

I Alice then generates two additional
√
n bits strings from the

first two strings: σ′ = σ ⊕ i1 andτ ′ = τ ⊕ i2

I Alice sends two strings to each database

I DB00receives σ, τ . DB01 receives σandτ ′ . DB10receives
σ′andτ . DB11 receives σ′andτ ′

I D00 sends ⊕σ(j1)=1,τ(j2)=1xj1,j2
I D01 sends ⊕σ(j1)=1,τ ′(j2)=1xj1,j2
I D10 sends ⊕σ′(j1)=1,τ(j2)=1xj1,j2
I D11 sends ⊕σ′(j1)=1,τ ′(j2)=1xj1,j2
I Alice XORs the four bits

proof

I Alice wants to know bit x(i1,i2)

I Alice generates σ , τ ∈ {0 , 1}
√
n

I Alice then generates two additional
√
n bits strings from the

first two strings: σ′ = σ ⊕ i1 andτ ′ = τ ⊕ i2
I Alice sends two strings to each database

I DB00receives σ, τ . DB01 receives σandτ ′ . DB10receives
σ′andτ . DB11 receives σ′andτ ′

I D00 sends ⊕σ(j1)=1,τ(j2)=1xj1,j2
I D01 sends ⊕σ(j1)=1,τ ′(j2)=1xj1,j2
I D10 sends ⊕σ′(j1)=1,τ(j2)=1xj1,j2
I D11 sends ⊕σ′(j1)=1,τ ′(j2)=1xj1,j2
I Alice XORs the four bits

proof

I Alice wants to know bit x(i1,i2)

I Alice generates σ , τ ∈ {0 , 1}
√
n

I Alice then generates two additional
√
n bits strings from the

first two strings: σ′ = σ ⊕ i1 andτ ′ = τ ⊕ i2
I Alice sends two strings to each database

I DB00receives σ, τ . DB01 receives σandτ ′ . DB10receives
σ′andτ . DB11 receives σ′andτ ′

I D00 sends ⊕σ(j1)=1,τ(j2)=1xj1,j2
I D01 sends ⊕σ(j1)=1,τ ′(j2)=1xj1,j2
I D10 sends ⊕σ′(j1)=1,τ(j2)=1xj1,j2
I D11 sends ⊕σ′(j1)=1,τ ′(j2)=1xj1,j2
I Alice XORs the four bits

proof

I Alice wants to know bit x(i1,i2)

I Alice generates σ , τ ∈ {0 , 1}
√
n

I Alice then generates two additional
√
n bits strings from the

first two strings: σ′ = σ ⊕ i1 andτ ′ = τ ⊕ i2
I Alice sends two strings to each database

I DB00receives σ, τ . DB01 receives σandτ ′ . DB10receives
σ′andτ . DB11 receives σ′andτ ′

I D00 sends ⊕σ(j1)=1,τ(j2)=1xj1,j2

I D01 sends ⊕σ(j1)=1,τ ′(j2)=1xj1,j2
I D10 sends ⊕σ′(j1)=1,τ(j2)=1xj1,j2
I D11 sends ⊕σ′(j1)=1,τ ′(j2)=1xj1,j2
I Alice XORs the four bits

proof

I Alice wants to know bit x(i1,i2)

I Alice generates σ , τ ∈ {0 , 1}
√
n

I Alice then generates two additional
√
n bits strings from the

first two strings: σ′ = σ ⊕ i1 andτ ′ = τ ⊕ i2
I Alice sends two strings to each database

I DB00receives σ, τ . DB01 receives σandτ ′ . DB10receives
σ′andτ . DB11 receives σ′andτ ′

I D00 sends ⊕σ(j1)=1,τ(j2)=1xj1,j2
I D01 sends ⊕σ(j1)=1,τ ′(j2)=1xj1,j2

I D10 sends ⊕σ′(j1)=1,τ(j2)=1xj1,j2
I D11 sends ⊕σ′(j1)=1,τ ′(j2)=1xj1,j2
I Alice XORs the four bits

proof

I Alice wants to know bit x(i1,i2)

I Alice generates σ , τ ∈ {0 , 1}
√
n

I Alice then generates two additional
√
n bits strings from the

first two strings: σ′ = σ ⊕ i1 andτ ′ = τ ⊕ i2
I Alice sends two strings to each database

I DB00receives σ, τ . DB01 receives σandτ ′ . DB10receives
σ′andτ . DB11 receives σ′andτ ′

I D00 sends ⊕σ(j1)=1,τ(j2)=1xj1,j2
I D01 sends ⊕σ(j1)=1,τ ′(j2)=1xj1,j2
I D10 sends ⊕σ′(j1)=1,τ(j2)=1xj1,j2

I D11 sends ⊕σ′(j1)=1,τ ′(j2)=1xj1,j2
I Alice XORs the four bits

proof

I Alice wants to know bit x(i1,i2)

I Alice generates σ , τ ∈ {0 , 1}
√
n

I Alice then generates two additional
√
n bits strings from the

first two strings: σ′ = σ ⊕ i1 andτ ′ = τ ⊕ i2
I Alice sends two strings to each database

I DB00receives σ, τ . DB01 receives σandτ ′ . DB10receives
σ′andτ . DB11 receives σ′andτ ′

I D00 sends ⊕σ(j1)=1,τ(j2)=1xj1,j2
I D01 sends ⊕σ(j1)=1,τ ′(j2)=1xj1,j2
I D10 sends ⊕σ′(j1)=1,τ(j2)=1xj1,j2
I D11 sends ⊕σ′(j1)=1,τ ′(j2)=1xj1,j2

I Alice XORs the four bits

proof

I Alice wants to know bit x(i1,i2)

I Alice generates σ , τ ∈ {0 , 1}
√
n

I Alice then generates two additional
√
n bits strings from the

first two strings: σ′ = σ ⊕ i1 andτ ′ = τ ⊕ i2
I Alice sends two strings to each database

I DB00receives σ, τ . DB01 receives σandτ ′ . DB10receives
σ′andτ . DB11 receives σ′andτ ′

I D00 sends ⊕σ(j1)=1,τ(j2)=1xj1,j2
I D01 sends ⊕σ(j1)=1,τ ′(j2)=1xj1,j2
I D10 sends ⊕σ′(j1)=1,τ(j2)=1xj1,j2
I D11 sends ⊕σ′(j1)=1,τ ′(j2)=1xj1,j2
I Alice XORs the four bits

proof

x(1,1) · · · x(1,
√
n)

... x(i ,j)
...

x(
√
n,1) · · · x(

√
n,
√
n)

I Since xi1,i2 is the only bit that appeared an odd number of
times, the result is xi1,i2

I Note that the number of bits sent is 8
√
n + 4

proof

x(1,1) · · · x(1,
√
n)

... x(i ,j)
...

x(
√
n,1) · · · x(

√
n,
√
n)

I Since xi1,i2 is the only bit that appeared an odd number of
times, the result is xi1,i2

I Note that the number of bits sent is 8
√
n + 4

proof

x(1,1) · · · x(1,
√
n)

... x(i ,j)
...

x(
√
n,1) · · · x(

√
n,
√
n)

I Since xi1,i2 is the only bit that appeared an odd number of
times, the result is xi1,i2

I Note that the number of bits sent is 8
√
n + 4

Theorem

Theorem
For all k ∈ N there is a k-DB, o((k log k)n

1
log k) -bit PIR scheme.

Theorem
For all k ∈ N there is a k-DB, o((k log k)n

1
log k+log log k) -bit PIR

scheme

Theorem
For all k there is a k-DB O(k3(n

1
2k−1)) -bit scheme.

Theorem
One-way Functions Imply O (nε) 2-DB PIRs

Theorem

Theorem
For all k ∈ N there is a k-DB, o((k log k)n

1
log k) -bit PIR scheme.

Theorem
For all k ∈ N there is a k-DB, o((k log k)n

1
log k+log log k) -bit PIR

scheme

Theorem
For all k there is a k-DB O(k3(n

1
2k−1)) -bit scheme.

Theorem
One-way Functions Imply O (nε) 2-DB PIRs

Theorem

Theorem
For all k ∈ N there is a k-DB, o((k log k)n

1
log k) -bit PIR scheme.

Theorem
For all k ∈ N there is a k-DB, o((k log k)n

1
log k+log log k) -bit PIR

scheme

Theorem
For all k there is a k-DB O(k3(n

1
2k−1)) -bit scheme.

Theorem
One-way Functions Imply O (nε) 2-DB PIRs

Theorem

Theorem
For all k ∈ N there is a k-DB, o((k log k)n

1
log k) -bit PIR scheme.

Theorem
For all k ∈ N there is a k-DB, o((k log k)n

1
log k+log log k) -bit PIR

scheme

Theorem
For all k there is a k-DB O(k3(n

1
2k−1)) -bit scheme.

Theorem
One-way Functions Imply O (nε) 2-DB PIRs

I Definition: Let z ,m ∈ N. Assume z is relatively prime to m.
The number z is a Quadratic Residue mod m if there exists a
number a such that a2 ≡ z mod m.

I Definition: The Quadratic Residue Problem is, given (z,m),
determine if z is a quadratic residue mod m

Theorem
Assume that the quadratic residue problem is ‘hard’ for m the
product of two primes and |m| > nδ . Then there exists a 1-DB,

O(n
1
2
+δ) -bit PIR scheme

I Definition: Let z ,m ∈ N. Assume z is relatively prime to m.
The number z is a Quadratic Residue mod m if there exists a
number a such that a2 ≡ z mod m.

I Definition: The Quadratic Residue Problem is, given (z,m),
determine if z is a quadratic residue mod m

Theorem
Assume that the quadratic residue problem is ‘hard’ for m the
product of two primes and |m| > nδ . Then there exists a 1-DB,

O(n
1
2
+δ) -bit PIR scheme

I Definition: Let z ,m ∈ N. Assume z is relatively prime to m.
The number z is a Quadratic Residue mod m if there exists a
number a such that a2 ≡ z mod m.

I Definition: The Quadratic Residue Problem is, given (z,m),
determine if z is a quadratic residue mod m

Theorem
Assume that the quadratic residue problem is ‘hard’ for m the
product of two primes and |m| > nδ . Then there exists a 1-DB,

O(n
1
2
+δ) -bit PIR scheme

Thank you

