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Definition

I The complexity of the PIR scheme is
k∑

j=1
|qj |+ |ANSj(qj)|.
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number a such that a2 ≡ z mod m.

I Definition: The Quadratic Residue Problem is, given (z,m),
determine if z is a quadratic residue mod m

Theorem
Assume that the quadratic residue problem is ‘hard’ for m the
product of two primes and |m| > nδ . Then there exists a 1-DB,
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1
2
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