Transformations in the pipeline

* Vertices enter the pipeline with their original
position, vertex shader processes one vertex at the
time and transforms its position in clip-space
coordinates.

« This transformation is obtained as combination of 3
transformations called model, view and projection:
— Model: used to position the object in the scene
— View: used to transform in view reference coordinates
— Projection: used to transform into clip-space

* Old versions of OpenGL only had two matrices
MODELVIEW and PROJECTION

Interactive Graphics: Geometric 10/2/2014
Transformations

Model space

The frame is local to the model.
In this example the origin is in
the middle of the car

‘World space

The frame in which all the ele-

ments of the scene

are expressed, including the view

reference frame. Yy

View space y /T

The frame is the view reference » ,“
frame VRF <[==
z

NDC space (Canonical viewing
volume)

-0.3
0.2 | =normalize(P V M p)
0.1

=1, ~1;1

—1,-1,-1

vy + 50
vx,Vy

= WV normalize(P V 1
l,‘_,,+84:| WV normalize(P V Mp)

Viewport space

Interactive Graphics: Geometric 10/2/2014

Transformations

Our first 3D client

YRR
E < _ - R
* Using the

primitives seen :
we create the 08| LT~ My

car and the tree 1 :
|
2 M3 0.6 2
. We must [E_, g g &
/

identify the
transformations [e
used /

Interactive Graphics: Geometric 10/2/2014
Transformations

Assembling the Tree and the Car

e M; = 5(0.25,0.4,0.25)
e My = T(0,0.8,0)5(0.6,1.65,0.6)
e M; = T(0,0.3,0)5(1,0.5,2)T(0,1,0)

* M3 = 50.05,0.3,03)R902z7T(0,-1,0)

- Transformations M, to M- are simple translations
that position the 4 wheels

Interactive Graphics: Geometric 10/2/2014
Transformations

Positioning the Trees and the Cars

« We now need to specify the transformations Mg and
M, that position the trees and the car.

e Mg is a simple translation (or a series of translations
If we have more trees).

e M, will consist of both rotation and translation and is
specified in NVMC by defining the frame F.

Interactive Graphics: Geometric 10/2/2014
Transformations

Viewing the scene

* We define an orthogonal projection from point
[0,10,0] in the direction of y, the view matrix is:

Xy Yx Zx Oy] 1 0 0 0]
X; Yz Zz 0Oy 0 -1 0 0
L0 0 O 14 0 O 0 1.

« The projection matrix is obtaind by choosing:

— |,r,t,b = 100 so to include the circuit that is 200mX200m

— The near plane is set to n=0
— The far plane is set to f=11, slightly larger than 10

Interactive Graphics: Geometric
Transformations

10/2/2014

The code

* We use the primitives we already defined and
modify the drawObject function.

OV%/Q \\

Clip = P
Space >
,," % JS\\/G Op current Matrixz Stack
1 mul P %]
E 0O 0 0 2 1 0 mul P V! &
l‘l push P V™! py1
M3 M3 W3 M mul P V™' M, pPv~!
push P V™! M, PV My;PV™!
N @ @ g @ A @ mul P V™! Mg My pv—! Mgy; P v
w; Wo W3 Wy b tw td mul PV™Y My My Ms PV My;PV~!

pop P V' M, PVt
Interactive Graphics: Geometric 10/2/2014
Transformations

Matrix Stack

* The structure of the code could simply be, for any
primitive:

1. Compute the proper transformation

2. Set the vertex shader to apply it

3. Render the primitive

« This method works but requires many unnecessary
steps. We can simplify it using a matrix stack where
the top one is the current matrix. We traverse the
graph and push a matrix anytime we go to a lower
level and a pop when we go up.

Interactive Graphics: Geometric 10/2/2014
Transformations

Code to set the matrices

var ratio = width / height; //line 229, Listing 4.1{

var bbox = this.game.race.bbox;

var winW = (bbox[3] - bbox[0]);

var winH = (bbox[5] - bbox[2]);

winW = winW * ratio * (winH / winW);

var P = SgIMat4.ortho([-winW / 2, -winH / 2, 0.0], [winW / 2, winH / 2, 21.0));
gl.uniformMatrix4fv(this.uniformShader.uProjectionMatrixLocation, false, P);
var stack = this.stack;

stack.loadldentity(); //line 238}

Il create the inverse of V //line 239, Listing 4.2{

var invV = SglMat4.lookAt([0, 20, 0], [0, O, 0], [1, O, O]);

stack.multiply(invV);

stack.push();//line 242

Interactive Graphics: Geometric 10/2/2014
Transformations

Code to initialize

NVMCClient.onlInitialize = function () {// line 290, Listing 4.2{
var gl = this.ui.gl;
NVMC.log("SpiderGL Version : " + SGL_VERSION_STRING + "\n");
this.game.player.color = [1.0, 0.0, 0.0, 1.0];
[INVMC.GamePlayers.addOpponent();
this.initMotionKeyHandlers();
this.stack = new SglMatrixStack();
this.initializeObjects(gl); //LINE 297}
this.uniformShader = new uniformShader(gl);

Interactive Graphics: Geometric 10/2/2014
Transformations

Code for shaders

var vertexShaderSource ="\

uniform mat4 uModelViewMatrix; \n\
uniform mat4 uProjectionMatrix; \n\

attribute vec3 aPosition; \n\
void main(void) \n\
{ \n\
gl_Position = uProjectionMatrix * uModelViewMatrix \n\
* vec4(aPosition, 1.0); \n\
|
var fragmentShaderSource ="\
precision highp float; \n\
uniform vec4 uColor; \n\
void main(void) \n\
{ \n\
gl_FragColor = vec4(uColor); \n\
Y

Interactive Graphics: Geometric 10/2/2014
Transformations

Code for object rendering

gl.uniformMatrix4fv(this.uniformShader.
uModelViewMatrixLocation, false, stack.matrix);
this.drawODbject(gl, this.cylinder, [0.8, 0.2, 0.2, 1.0], [0, O, 0, 1.0]);

* This associates the current
matrix of the stack to the
uModelViewMatrix and

then renders the object

- Snapshot of image created

Interactive Graphics: Geometric 10/2/2014
Transformations

