
Transformations in the pipeline

• Vertices enter the pipeline with their original 

position, vertex shader processes one vertex at the 

time and transforms its position in clip-space 

coordinates.

• This transformation is obtained as combination of 3 

transformations called model, view and projection:

– Model: used to position the object in the scene

– View: used to transform in view reference coordinates

– Projection: used to transform into clip-space

• Old versions of OpenGL only had two matrices 

MODELVIEW and PROJECTION

10/2/2014Interactive Graphics: Geometric 

Transformations

1



10/2/2014Interactive Graphics: Geometric 

Transformations

2



Our first 3D client

• Using the 

primitives seen 

we create the 

car and the tree

• We must 

identify the 

transformations 

used

10/2/2014Interactive Graphics: Geometric 

Transformations

3



Assembling the Tree and the Car

• 𝑀1 = 𝑆(0.25,0.4,0.25)

• 𝑀0 = 𝑇(0,0.8,0)𝑆(0.6,1.65,0.6)

• 𝑀2 = 𝑇(0,0.3,0)𝑆(1,0.5,2)𝑇(0,1,0)

• 𝑀3 = 𝑆(0.05,0.3,0.3)𝑅90𝑍𝑇(0,−1,0)

• Transformations 𝑀4 to 𝑀7 are simple translations 

that position the 4 wheels

10/2/2014Interactive Graphics: Geometric 

Transformations

4



Positioning the Trees and the Cars

• We now need to specify the transformations 𝑀8 and 

𝑀9 that position the trees and the car.

• 𝑀8 is a simple translation (or a series of translations

if we have more trees).

• 𝑀9 will consist of both rotation and translation and is

specified in NVMC by defining the frame 𝐹𝑐

10/2/2014Interactive Graphics: Geometric 

Transformations

5



Viewing the scene

• We define an orthogonal projection from point

[0,10,0] in the direction of y, the view matrix is:

𝑉 =

𝑥𝑥 𝑦𝑥 𝑧𝑥 𝑂𝑥
𝑥𝑦 𝑦𝑦 𝑧𝑦 𝑂𝑦
𝑥𝑧 𝑦𝑧 𝑧𝑧 𝑂𝑧
0 0 0 1

=

1 0 0 0
0 0 −1 10
0 −1 0 0
0 0 0 1

• The projection matrix is obtaind by choosing:

– l,r,t,b = 100 so to include the circuit that is 200mX200m

– The near plane is set to n=0

– The far plane is set to f=11, slightly larger than 10

10/2/2014Interactive Graphics: Geometric 

Transformations

6



The code

• We use the primitives we already defined and 

modify the drawObject function.

10/2/2014Interactive Graphics: Geometric 

Transformations

7



Matrix Stack

• The structure of the code could simply be, for any

primitive:

1. Compute the proper transformation

2. Set the vertex shader to apply it

3. Render the primitive

• This method works but requires many unnecessary

steps. We can simplify it using a matrix stack where

the top one is the current matrix. We traverse the 

graph and push a matrix anytime we go to a lower

level and a pop when we go up.

10/2/2014Interactive Graphics: Geometric 

Transformations

8



Code to set the matrices

var ratio = width / height; //line 229, Listing 4.1{

var bbox = this.game.race.bbox;

var winW = (bbox[3] - bbox[0]);

var winH = (bbox[5] - bbox[2]);

winW = winW * ratio * (winH / winW);

var P = SglMat4.ortho([-winW / 2, -winH / 2, 0.0], [winW / 2, winH / 2, 21.0]);

gl.uniformMatrix4fv(this.uniformShader.uProjectionMatrixLocation, false, P);

var stack = this.stack;

stack.loadIdentity(); //line 238}

// create the inverse of V //line 239, Listing 4.2{

var invV = SglMat4.lookAt([0, 20, 0], [0, 0, 0], [1, 0, 0]);

stack.multiply(invV);

stack.push();//line 242

10/2/2014Interactive Graphics: Geometric 

Transformations

9



Code to initialize

NVMCClient.onInitialize = function () {// line 290, Listing 4.2{

var gl = this.ui.gl;

NVMC.log("SpiderGL Version : " + SGL_VERSION_STRING + "\n");

this.game.player.color = [1.0, 0.0, 0.0, 1.0];

//NVMC.GamePlayers.addOpponent();

this.initMotionKeyHandlers();

this.stack = new SglMatrixStack();

this.initializeObjects(gl); //LINE 297}

this.uniformShader = new uniformShader(gl);

};

10/2/2014Interactive Graphics: Geometric 

Transformations

10



Code for shaders

var vertexShaderSource = "\

uniform mat4 uModelViewMatrix; \n\

uniform mat4 uProjectionMatrix; \n\

attribute vec3 aPosition; \n\

void main(void) \n\

{ \n\

gl_Position = uProjectionMatrix * uModelViewMatrix \n\

* vec4(aPosition, 1.0);  \n\

}";

var fragmentShaderSource = "\

precision highp float; \n\

uniform vec4 uColor; \n\

void main(void) \n\

{ \n\

gl_FragColor = vec4(uColor); \n\

} ";

10/2/2014Interactive Graphics: Geometric 

Transformations

11



Code for object rendering

gl.uniformMatrix4fv(this.uniformShader.

uModelViewMatrixLocation, false, stack.matrix);

this.drawObject(gl, this.cylinder, [0.8, 0.2, 0.2, 1.0], [0, 0, 0, 1.0]);

• This associates the current

matrix of the stack to the

uModelViewMatrix and

then renders the object

• Snapshot of image created

10/2/2014Interactive Graphics: Geometric 

Transformations

12


