Transformations in the pipeline

* Vertices enter the pipeline with their original
position, vertex shader processes one vertex at the
time and transforms its position in clip-space
coordinates.

« This transformation is obtained as combination of 3
transformations called model, view and projection:
— Model: used to position the object in the scene
— View: used to transform in view reference coordinates
— Projection: used to transform into clip-space

* Old versions of OpenGL only had two matrices
MODELVIEW and PROJECTION
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Model space

The frame is local to the model.
In this example the origin is in
the middle of the car

‘World space

The frame in which all the ele-

ments of the scene
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Our first 3D client
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* Using the

primitives seen :
we create the 08| LT~ My

car and the tree 1 :
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identify the
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Assembling the Tree and the Car

e M; = 5(0.25,0.4,0.25)
e My = T(0,0.8,0)5(0.6,1.65,0.6)
e M; = T(0,0.3,0)5(1,0.5,2)T(0,1,0)

* M3 = 50.05,0.3,03)R902z7T(0,-1,0)

- Transformations M, to M- are simple translations
that position the 4 wheels
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Positioning the Trees and the Cars

« We now need to specify the transformations Mg and
M, that position the trees and the car.

e Mg is a simple translation (or a series of translations
If we have more trees).

e M, will consist of both rotation and translation and is
specified in NVMC by defining the frame F.
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Viewing the scene

* We define an orthogonal projection from point
[0,10,0] in the direction of y, the view matrix is:

Xy Yx Zx Oy] 1 0 0 0 ]
X; Yz Zz 0Oy 0 -1 0 0
L0 0 O 14 0 O 0 1.

« The projection matrix is obtaind by choosing:

— |,r,t,b = 100 so to include the circuit that is 200mX200m

— The near plane is set to n=0
— The far plane is set to f=11, slightly larger than 10

Interactive Graphics: Geometric
Transformations

10/2/2014




The code

* We use the primitives we already defined and
modify the drawObject function.

OV%/Q \\

Clip = P
Space >
,," % JS\\/G Op current Matrixz Stack
1 mul P %]
E 0O 0 0 2 1 0 mul P V! &
l‘l push P V™! py1
M3 M3 W3 M mul P V™' M, pPv~!
push P V™! M, PV My;PV™!
N @ @ g @ A @ mul P V™! Mg My pv—! Mgy; P v
w; Wo W3 Wy b tw td mul PV™Y My My Ms PV My;PV~!

pop P V' M, PVt
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Matrix Stack

* The structure of the code could simply be, for any
primitive:

1. Compute the proper transformation

2. Set the vertex shader to apply it

3. Render the primitive

« This method works but requires many unnecessary
steps. We can simplify it using a matrix stack where
the top one is the current matrix. We traverse the
graph and push a matrix anytime we go to a lower
level and a pop when we go up.
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Code to set the matrices

var ratio = width / height; //line 229, Listing 4.1{

var bbox = this.game.race.bbox;

var winW = (bbox[3] - bbox[0]);

var winH = (bbox[5] - bbox[2]);

winW = winW * ratio * (winH / winW);

var P = SgIMat4.ortho([-winW / 2, -winH / 2, 0.0], [winW / 2, winH / 2, 21.0));
gl.uniformMatrix4fv(this.uniformShader.uProjectionMatrixLocation, false, P);
var stack = this.stack;

stack.loadldentity(); //line 238}

Il create the inverse of V //line 239, Listing 4.2{

var invV = SglMat4.lookAt([0, 20, 0], [0, O, 0], [1, O, O]);

stack.multiply(invV);

stack.push();//line 242
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Code to initialize

NVMCClient.onlInitialize = function () {// line 290, Listing 4.2{
var gl = this.ui.gl;
NVMC.log("SpiderGL Version : " + SGL_VERSION_STRING + "\n");
this.game.player.color = [1.0, 0.0, 0.0, 1.0];
[INVMC.GamePlayers.addOpponent();
this.initMotionKeyHandlers();
this.stack = new SglMatrixStack();
this.initializeObjects(gl); //LINE 297}
this.uniformShader = new uniformShader(gl);

Interactive Graphics: Geometric 10/2/2014
Transformations




Code for shaders

var vertexShaderSource ="\

uniform mat4 uModelViewMatrix; \n\
uniform mat4 uProjectionMatrix; \n\

attribute vec3 aPosition; \n\
void main(void) \n\
{ \n\
gl_Position = uProjectionMatrix * uModelViewMatrix \n\
* vec4(aPosition, 1.0); \n\
|
var fragmentShaderSource ="\
precision highp float; \n\
uniform vec4 uColor; \n\
void main(void) \n\
{ \n\
gl_FragColor = vec4(uColor); \n\
Y
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Code for object rendering

gl.uniformMatrix4fv(this.uniformShader.
uModelViewMatrixLocation, false, stack.matrix);
this.drawODbject(gl, this.cylinder, [0.8, 0.2, 0.2, 1.0], [0, O, 0, 1.0]);

* This associates the current
matrix of the stack to the
uModelViewMatrix and

then renders the object

- Snapshot of image created
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