
Learning Objectives 
•  Identify the reasons why we study compiler design 

•  List the components of a traditional 2-pass compiler/3-pass 
and their functionality 

•  Provide a brief summary of the history of compilers and the 
state of the art today 

1 



Why study compilers - 1 
•  Single core performance has plateuaed – need to extract 

performance through parallelism (i.e., parallel code) 

2 



Why study compilers - 2 
•  Static analysis for reliability and security violations 

3 Slide courtesy: Ben Zorn, MSR 



Why study compilers - 3 
•  New languages that are dynamic – challenging to compile  
•  Embedded applications – need specialized compilers (energy, 

space, cost are the constraints) 

4 



Why Study Compilers - 4 
•  What is the main factor influencing browser adoption ? 

5 



Learning Objectives 
•  Identify the reasons why we study compiler design 

•  List the components of a traditional 2-pass compiler/3-
pass and their functionality 

•  Provide a brief summary of the history of compilers and the 
state of the art today 

6 



7 

 

Implications 
•  Must recognize legal (and illegal) programs 
•  Must generate correct code 
•  Must manage storage of all variables (and code) 
•  Must agree with OS & linker on format for object code 

Big step up from assembly language—use higher level notations 

High-level View of a Compiler 

Source 
code 

Machine 
code Compiler 

Errors  



8 

Traditional Two-pass Compiler 

Implications 
•  Use an intermediate representation (IR) 
•  Front end maps legal source code into IR 
•  Back end maps IR into target machine code 
•  Admits multiple front ends & multiple passes      (better code) 

 
Typically, front end is O(n) or O(n log n), while back end is NPC 

Source 
code 

Front 
End 

Errors  

Machine 
code 

Back 
End IR 

Depends primarily 
on source language 

Depends primarily 
on target machine 

Classic principle from 
software engineering: 
Separation of concerns 



9 

IR 
 
 
 
 
 
 
 
 

 

Can we build n x m compilers with n+m components? 
•  Must encode all language specific knowledge in each front end 
•  Must encode all features in a single IR 
•  Must encode all target specific knowledge in each back end 

Successful in systems with assembly level (or lower) IRs 

A Common Fallacy 

Fortran 

Scheme 

C++ 

Python 

Front 
end 

Front 
end 

Front 
end 

Front 
end 

Back 
end 

Back 
end 

Target 2 

Target 1 

Target 3 Back 
end 

e.g., gcc’s rtl or llvm ir 



10 

Responsibilities 
•  Recognize legal (& illegal) programs 
•  Report errors in a useful way 
•  Produce IR & preliminary storage map 
•  Shape the code for the rest of the compiler 
•  Much of front end construction can be automated 

The Front End 

Source 
code Scanner 

IR 
Parser 

Errors  

tokens 



11 

The Front End 

Scanner 
•  Maps character stream into words—the basic unit of syntax 
•  Produces pairs — a word &  its part of speech 

x = x + y ;   becomes <id,x> = <id,x> + <id,y> ; 
—  word ≅ lexeme, part of speech ≅ token type, pair ≅ a token 

•  Typical tokens include number, identifier, +, –, new, while, if 
•  Speed is important 

Textbooks advocate automatic scanner generation 
Commercial practice appears to be hand-coded scanners 

Source 
code Scanner 

IR 
Parser 

Errors  

tokens 



12 

The Front End 

Parser 
•  Recognizes context-free syntax & reports errors 
•  Guides context-sensitive (“semantic”) analysis  (type checking) 
•  Builds IR for source program (e.g., Abstract Syntax Tree) 

Hand-coded parsers are fairly easy to build 
Most books advocate using automatic parser generators 

Source 
code Scanner 

IR 
Parser 

Errors  

tokens 



13 

Abstract Syntax Tree (AST) 
 
 
 
 
 
 
 
 
 
 
This is much more concise 
 
ASTs are one kind of intermediate representation (IR) 

+ 

- 

<id,x> <number,2>!

<id,y> The AST summarizes 
grammatical structure, 
without including detail 
about the derivation  

Some people think that the 
AST is the “natural” IR. 



14 

The Back End 
 
 
 
 
 
 
Responsibilities 
•  Translate IR into target machine code 
•  Choose instructions to implement each IR operation 
•  Decide which value to keep in registers 
•  Ensure conformance with system interfaces 

Automation has been less successful in the back end 

Errors  

IR Register 
Allocation 

Instruction 
Selection 

Machine 
code 

Instruction 
Scheduling 

IR IR 



15 

The Back End 

 

Instruction Selection 
•  Produce fast, compact code 
•  Take advantage of target features  such as addressing modes 
•  Usually viewed as a pattern matching problem 

—  ad hoc methods, pattern matching, dynamic programming 
—  Form of the IR influences choice of technique 

This was the problem of the future in 1978 
—  Spurred by transition from PDP-11 to VAX-11 
— Orthogonality of RISC simplified this problem 

Errors  

IR Register 
Allocation 

Instruction 
Selection 

Machine 
code 

Instruction 
Scheduling 

IR IR 

Standard goal has become “locally optimal” code. 



16 

The Back End 

 

Register Allocation 
•  Have each value in a register when it is used 
•  Manage a limited set of resources 
•  Can change instruction choices & insert LOADs & STOREs 
•  Optimal allocation is NP-Complete in most settings 

Compilers approximate solutions to NP-Complete problems 

Errors  

IR Register 
Allocation 

Instruction 
Selection 

Machine 
code 

Instruction 
Scheduling 

IR IR 



17 

The Back End 

 

Instruction Scheduling 
•  Avoid hardware stalls and interlocks 
•  Use all functional units productively 
•  Can increase lifetime of variables         (changing the allocation) 
 
Optimal scheduling is NP-Complete in nearly all cases 

Heuristic techniques are well developed 

Errors  

IR Register 
Allocation 

Instruction 
Selection 

Machine 
code 

Instruction 
Scheduling 

IR IR 



18 

Traditional Three-part Compiler 

 

Code Improvement (or Optimization) 
•  Analyzes IR and rewrites (or transforms) IR 
•  Primary goal is to reduce running time of the compiled code 

— May also improve space, power consumption, … 
•  Must preserve “meaning” of the code 

— Measured by values of named variables 

Errors  

Source 
Code 

Optimizer 
(Middle End) 

Front 
End 

Machine 
code 

Back 
End 

IR IR 

Subject of this course 
 



19 

The Optimizer (or Middle End) 

 

Typical Transformations 
•  Discover & propagate some constant value 
•  Move a computation to a less frequently executed place 
•  Specialize some computation based on context 
•  Discover a redundant computation & remove it 
•  Remove useless or unreachable code 
•  Encode an idiom in some particularly efficient form 

Errors  

Opt 
1 

Opt 
3 

Opt 
2 

Opt 
n 

... IR IR IR IR IR 

Modern optimizers are structured as a series of  passes 



LLVM Compiler Structure 

20 



21 

Run-time Compilation 
Systems such as HotSpot, Jalapeno, and Dynamo deploy 
compiler and optimization techniques at run-time 
 
 
 
 
 
 
Policy chooses between 
interpreter & compiler 
•  LLVM compiles on 1st call 
•  Dynamo optimizes on 50th execution 
 

Offline 
Compiler 

Source 
Code 

Run-time environment 

Interpreter 

JIT 
Compiler Code base 

IR 



22 

Even a modern JIT fits the mold, albeit with fewer passes 

•  Front end tasks are handled elsewhere 
•  Few (if any) optimizations 

Avoid expensive analysis 
Emphasis on generating native code 
Compilation must be a priori profitable 

JIT Compilers 

Middle 
End 

Back 
End 

bytecode native 
code 

Java 
Environment 



23 

Role of the Run-time System 
•  Memory management services 

—  Allocate 
→ In the heap or in an activation record (stack frame) 

—  Deallocate  
—  Collect garbage 

•  Run-time type checking 
•  Error processing 
•  Interface to the operating system 

—  Input and output 
•  Support of parallelism 

—  Parallel thread initiation 
—  Communication and synchronization 



Learning Objectives 
•  Identify the reasons why we study compiler design 

•  List the components of a traditional 2-pass compiler/3-pass 
and their functionality 

•  Provide a brief summary of the history of compilers and 
the state of the art today 

24 



First FORTRAN compiler 
•  John Backus on the Fortran Compiler (around 1958) 

•  “It is our belief that if FORTRAN, during its first months, 
were to translate any reasonable scientific program into an 
object program only half as fast as its hand-coded 
counterpart, then acceptance of our system would be in 
serious danger. ...  

•  “To this day I believe that our emphasis on object program 
efficiency rather than on language design was basically 
correct. I believe that had we failed to produce efficient 
programs, the widespread use of languages like FORTRAN 
would have been seriously delayed.” 

  
•  – John Backus, Fortran I, II and III, Annals of the History 

of Computing, vol. 1, no. 1, July 1979.  
 25 



A Sense of History 

1955-1959 
Fortran 
Cobol 
 
1960–1964 
Algol 60 
 
 
 
1965-1969 
PL/I 
Algol 68 
Simula 67 

Commercial compilers generated good code 
Separation of concerns  (Backus, 1956) 
Control-flow graph, register allocation (Haibt, 1957) 
 
Academics try to catch up with industrial trade secrets 
Early algorithms for “code generation” (1960, 1961) 
Relating theory to practice (Lavrov, 1962) 
Alpha project at Novosibirsk (Ershov, 1963 & 1965) 
 
Technology begins to spread 
Fortran H (Medlock & Lowry, 1967) 
Value numbering (Balke, 1967 ?) 
Literature begins to emerge (Allen, 1969) 



A Sense of History 

1970-1974 
SETL 
Smalltalk 
Lisp 
APL 
 
 
1975-1979 
Pascal 
CLU 
Alphard 
Com. Lisp  

The literature explodes and optimization grows up 
Cocke & Schwartz, Allen-Cocke Catalog, 1971 
Theory of analysis   (Kildall, 1971, Allen & Cocke, 1972) 
Interprocedural analysis   (Spillman,1972) 
Strength reduction, dead code elimination, Live    (SETL) 
Expression tree algorithms   (Sethi, Aho & Ullman) 
 
Global optimization comes of age 
Full literature of data-flow analysis 
Strength reduction (Cocke & Kennedy, 1977) 
Partial redundancy elimination (Morel & Renvoise, 1979) 
Inline substitution studies (Scheiffler, 1977, Ball, 1979) 
Tail recursion elimination (Steele, 1978) 
Data dependence analysis (Bannerjee, 1979) 



A Sense of History 

1980-1984 
Smalltalk80 
ADA 
Scheme 
 
 
 
 
1985–1989 
C++ 
ML 
Modula-3 

Programming environments and new architectures  
Incremental analysis  (Reps, 1982; Ryder, Zadeck, 1983) 
Incremental compilation  (Schwartz et al., 1984) 
Interprocedural analysis  (Myers, 1981; Cooper, 1984) 
RISC compilers  (PL.8, 1980; MIPS, 1983) 
Graph coloring allocation (Chaitin, 1981; Chow, 1983) 
Vectorization (Wolfe, 1982;  R. Allen, 1983) 
 

Resurgence of interest in classical optimization 
Constant propagation (Wegman & Zadeck,Torczon,1985) 
Code motion of control structures (Cytron et al., 1986) 
Value numbering (Alpern et al., Rosen et al., 1988) 
Software pipelining (Lam, Aiken & Nicolau, 1988) 
Pointer analysis (Ruggeri, 1988) 
SSA-form (Cytron et al., 1989) 



A Sense of History 

1990-1994 
Fortran 90 
 
 
 
 
 
1995–1999 
Java 
Perl (?) 

Architects (and memory speed) drive the process  
Hierarchical allocation (Koblenz & Callahan,1991) 
Scalar replacement (Carr 1991) 
Cache blocking (Wolf, 1991) 
Prefetch placement (Mowry, 1992) 
Commercial interprocedural compilers (Convex, 1992) 
 

The internet & SSA both come of age 
JIT compilers (Everyone, from 1996 to present) 
Code compression (Franz, 1995; Frasier et al., 1997; ...) 
SSA-based formulations of old methods (lots of papers) 
Compile to VM (Java, 1995; Bernstein, 1998; … ) 
Memory layout optimizations (Smith, 19??; others …) 
Widespread use of analysis (pointers, omega test, …) 

* 



The state of compilers today: My subjective view 
•  2000 to 2005: Expansion beyond classical optimization 

—  Dawson Engler’s work on finding bugs in the Linux Kernel (2001) 
— Work by Manuvir Das on protocol violation errors (2002) 
—  SLAM at MSR for model checking of C code (2001) 
— MOPS by David Wagner for security property checking (2001) 
—  Findbugs by William Pugh for bug pattern detection (2004) 
 

•  2005 to 2010: Program synthesis, energy/power, Web 2.0 
—  Program sketching by Solar Lezama et al (2005, 2006) 
—  Program synthesis by Gulwani (2007-2014) 
—  Failure oblivious computing by Rinard (2005- 2014) 
—  Fault-tolerance by Berger, Pattabiraman, Zorn (2005-2014) 
—  Energy savings through relaxed correctness – Sankaralingam, 

Chillimbi, Pattabiraman, Grossman, Ceze (2009 to 2014) 
—  Fast compilation of JavaScript programs (2010 onwards) 
—  Analysis of programs for continuity (Gulwani and Chaudhri) 30 


