
CS 426 Topics 2: Control Flow Analysis

University of British Columbia

Objectives

Brief Overview of Optimization

1. Classifying optimizations: 3 axes for classifying optimizations

2. Criteria for choosing optimizations: Safety, profitability, opportunity

Control Flow Analysis

1. Control Flow Graphs

2. Dominators: Dominance; the dominance graph

3. Defining Loops in Flow Graphs: Natural loops, Intervals.

4. Reducibility: Reducible vs. irreducible flow graphs; T1/T2 transformations;
eliminating irreducibility.

Topics 2: Control Flow Analysis – p. 1/23

CS 426 Topics 2: Control Flow Analysis

University of British Columbia

A brief catalog of optimizations

activation record merging
branch folding
branch straightening
carry optimization
code hoisting
common subexpression elim.
constant folding
constant propagation
copy propagation
dead (unreachable) code elim.
dead (unused) code elim.
dead space reclamation
detection of parallelism
expression simplification
heap-to-stack promotion
instruction scheduling
live range shrinking

loop distribution
loop fusion
(loop) induction variable elim.
loop invariant code motion
loop interchange
(loop) linear func. test replacement
(loop) software pipelining
loop splitting
loop test elision
loop tiling
loop unrolling
loop unswitching
(loop) unroll and jam
. . .

machine idiom recognition
operator strength reduc’n
partial redundancy elim.
peephole optimization
procedure inlining
procedure integration
procedure specialization
software prefetching
special-case code gen.
register allocation
register assignment
register promotion
reassociation
scalar expansion
scalar replacement
stack height reduction
value numbering (local)
value numbering (global)

Topics 2: Control Flow Analysis – p. 2/23

CS 426 Topics 2: Control Flow Analysis

University of British Columbia

Axes of Classification 1 – Machine Dependence

Machine independent transformations

applicable across broad range of machines

remove redundant computations

decrease (overhead/real work)

reduce running time or space

Machine dependent transformations

apitalize on specific machine properties

improve mapping from il onto machine

use “exotic” instructions

The distinction is not always clear cut:

consider replacing multiply with shifts and adds

Machine independent ⇒ deliberately ignore hardware parameters
Machine dependent ⇒ explicitly consider hardware parameters

Topics 2: Control Flow Analysis – p. 3/23

CS 426 Topics 2: Control Flow Analysis

University of British Columbia

Axes of Classification 2 – Scope

Local

confined to straight line code

simplest to analyze, prove
strongest theorems

code quality suffers at block
boundaries

Regional

multiple, related basic blocks

use results from one block to
improve its neighbors

common choices:
single loop or loop nest
extended basic block
dominator region

Global (intra-procedural)
consider the whole procedure

classical data-flow analysis,
dependence analysis

make best choices for entire
procedure

Interprocedural (whole program)

analyze whole programs

less information is discernible

move knowledge or code
across calls

Topics 2: Control Flow Analysis – p. 4/23

CS 426 Topics 2: Control Flow Analysis

University of British Columbia

Axes of Classification 3 - Effect

Algebraic transformations ≡ uses algebraic properties

E.g., identities, commutativity, constant folding . . .

Code simplification transformations ≡ simplify complex code sequences

Control-flow simplification ≡ simplify branch structure

Computation simplification ≡ replace expensive instructions with cheaper
ones (e.g., constant propagation)

Code elimination transformations ≡ eliminates unnecessary computations

DCE, Unreachable code elimination

Redundancy elimination transformations ≡ eliminate repetition

Local or global CSE, LICM, Value Numbering, PRE

Reordering transformations ≡ changes the order of computations

Loop transformations ≡ change loop structure

Code scheduling ≡ reorder machine instructions

Topics 2: Control Flow Analysis – p. 5/23

CS 426 Topics 2: Control Flow Analysis

University of British Columbia

Three Considerations

In discussing any optimization, look for three issues:
safety, profitability, opportunity

Safety — Does it change the results of the computation?

dataflow analysis

alias/dependence analysis

special-case analysis

Profitability — Is it expected to speed up execution?

always profitable

seat of the pants rules

Opportunity — Can we locate application sites efficiently?

find all sites

updates and ordering

Topics 2: Control Flow Analysis – p. 6/23

CS 426 Topics 2: Control Flow Analysis

University of British Columbia

Flow Graphs

A fundamental representation for global optimizations.

Flow Graph: A triple G=(N,A,s), where (N,A) is a (finite) directed graph, s ∈ N is a
designated “initial” node, and there is a path from node s to every node
n ∈ N .

Properties:

An entry node in a flow graph has no predecessors.
An exit node in a flow graph has no successors.

There is exactly one entry node, s.
We can modify a general DAG to ensure this. How?

In a control flow graph, any node unreachable from s can be safely deleted.

Control flow graphs are usually sparse. That is, | A |= O(| N |). In fact, if
only binary branching is allowed | A |≤ 2 | N |.

Topics 2: Control Flow Analysis – p. 7/23

CS 426 Topics 2: Control Flow Analysis

University of British Columbia

Control Flow Graph: CFG

Definitions

Basic Block ≡ a sequence of statements (or instructions) S1 . . . Sn such that
execution control must reach S1 before S2, and, if S1 is executed, then
S2 . . . Sn are all executed in that order (unless one of the statements causes
the program to halt)

Leader ≡ the first statement of a basic block

Maximal Basic Block ≡ a maximal-length basic block

CFG ≡ a directed graph (usually for a single procedure) in which:
Each node is a single basic block
There is an edge b1 → b2 if block b2 may be executed after block b1 in
some execution

NOTE: A CFG is a conservative approximation of the control flow! Why?

Homework: Read Section 9.4 of Aho, Sethi & Ullman: algorithm to partition a procedure into basic blocks.

Topics 2: Control Flow Analysis – p. 8/23

CS 426 Topics 2: Control Flow Analysis

University of British Columbia

Dominance in Flow Graphs

Let d, d1, d2, d3, n be nodes in G.
Definitions

d dominates n (write “d dom n”) iff every path in G from s to n contains d.

d properly dominates n if d dominates n and d 6= n.

d is the immediate dominator of n (write “d idom n”) if d is the last dominator on any
path from initial node to n, d 6= n

DOM(x) denotes the set of dominators of x.

Properties

Lemma 1: DOM(s) = { s }.

Lemma 2: s dom d, ∀ nodes d in G.

Lemma 3: The dominance relation on nodes in a flow graph is a partial ordering:
Reflexive : n dom n is true ∀ n.
Antisymmetric : If d dom n, then n dom d cannot hold.
Transitive : d1 dom d2 ∧ d2 dom d3 =⇒ d1 dom d3

Topics 2: Control Flow Analysis – p. 9/23

CS 426 Topics 2: Control Flow Analysis

University of British Columbia

The Dominator Graph

Lemma 4: The dominators of a node form a chain.
Proof : Suppose x and y dominate node z. Then there is a path from s to z

where both x and y appear only once (if not “cut and paste” the path).
Assume that x appears first. Then if x does not dominate y there is a path
from s to y that does not include x contradicting the assumption that x
dominates z.

Lemma 5 : Every node except s has a unique immediate dominator.
Proof : The dominators form a chain. The last node in the chain is the
immediate dominator, and the last node always exists and is unique.

Lemma 6 : Create the dominator graph for G:
Same nodes in G.
Edge n1 → n2 iff n1 idom n2.

The dominator graph is a ?

Topics 2: Control Flow Analysis – p. 10/23

CS 426 Topics 2: Control Flow Analysis

University of British Columbia

Dominator Construction

Algorithm DOM : Finding Dominators in A Flow Graph

Input : A flow graph G = (N,A.s).

Output : The sets DOM(x) for each x ∈ N .

Algorithm:

DOM(s) := { s }

forall n ∈ N − {s} do
DOM(n) := N

od

while changes to any DOM(n) occur do
forall n in N − {s} do

DOM(n) := {n}
⋃ ⋂

p→n
DOM(p)

od
od

Topics 2: Control Flow Analysis – p. 11/23

CS 426 Topics 2: Control Flow Analysis

University of British Columbia

Identifying Program “Loops” in Control Flow Graphs

Properties of a Good Definition
Q. What properties of “loops” do we want to extract from the CFG?

Represent cycles in flow graph, with precise entries/exits

. Distinguish nested loops and nesting structure

. Extract loop bounds, loop stride, iterations: Symbolic analysis

Q. What kinds of loops do we need to allow?

. Loops intuitively defined by programmers (including all high-level language
loops)

. Support all kinds of loops: structured and unstructured

Topics 2: Control Flow Analysis – p. 12/23

CS 426 Topics 2: Control Flow Analysis

University of British Columbia

Identifying Program “Loops” in Control Flow Graphs

The right definition of “loop” is not obvious. Obviously bad definitions:

Cycle: Not necessarily properly nested or disjoint

SCC: Too coarse; no nesting information

Easy Harder Difficult

Topics 2: Control Flow Analysis – p. 13/23

CS 426 Topics 2: Control Flow Analysis

University of British Columbia

Natural Loops

Def. Back Edge: An edge n → d where d dom n

Def. Natural Loop: Given a back edge, n → d, the natural loop corresponding to
n → d is the set of nodes {d + all nodes that can reach n without going through d}
Def: Loop Header: A node d that dominates all nodes in the loop

Header is unique for each natural loop Why?

⇒ d is the unique entry point into the loop

Uniqueness is very useful for many optimizations

Topics 2: Control Flow Analysis – p. 14/23

CS 426 Topics 2: Control Flow Analysis

University of British Columbia

Intervals

Idea
Partition flow graph into disjoint subgraphs where each subgraph has a single
entry (header).
Intervals are closely connected to concept of reducibility (see later slides).
Definition
The interval with node h as header, denoted I(h), is the subset of nodes of G
obtained as follows:

I(h) := {h}

while ∃ node m such that m 6∈ I(h) and m 6= s and
all arcs entering m leave nodes in I(h)

do
I(h) := I(h) +m

od

Lemma 7. I(h) is unique: does not depend on order of node insertion.
Proof : See Hecht

Topics 2: Control Flow Analysis – p. 15/23

CS 426 Topics 2: Control Flow Analysis

University of British Columbia

Properties of Intervals

Lemma 8. The subgraph generated by I(h) is itself a flow graph.

Lemma 9.
(a) Every arc entering a node of the interval I(h) from the outside enters the

header h.

(b) h dominates every node in I(h)

(c) every cycle in I(h) includes h

Proof.
(a) Consider a node m ∈ h that is also an entry node of I(h). Then m could not

have been added to I(h).

(b) Consider a node m ∈ I(h) not dominated by h. Then m could not have been
added to I(h).

(c) Suppose there is a cycle in I(h) that does not include h. Then no node in
the cycle could have been added to I(h), because before any such node
could be added the preceeding node in the cycle would have to be added.

Topics 2: Control Flow Analysis – p. 16/23

CS 426 Topics 2: Control Flow Analysis

University of British Columbia

Comparing Loop Definitions

Natural loop: Defined using dominators

+ Intuitive, and similar to SCC.

+ Single entry point: “loop header”.

+ Identifies nested loops (if different
headers)

- Nested loops are not disjoint.

- Some nodes are not part of any
natural loop.

- Does not include some cycles in
“irreducible” flow graphs.

Intervals: Defined in terms of reachability in flow graph

+ Single entry point: “loop header”.

+ Identifies nested loops

+ Nested loops are disjoint.

+ In reducible graphs, all nodes are
part of some interval.

- Not an intuitive definition.

- Does not include some cycles in
“irreducible” flow graphs.

Topics 2: Control Flow Analysis – p. 17/23

CS 426 Topics 2: Control Flow Analysis

University of British Columbia

Reducible and Irreducible Flow Graphs

Def. Reducible flow graph: the two easier cases
A flow graph G is called reducible iff we can partition the edges into 2 sets:

1. forward edges: should form a DAG in which every node is reachable from
initial node

2. other edges must be back edges: i.e., only those edges n → d where
d dom n

Idea: Every “cycle” has at least one back edge
⇒ All “cycles” are natural loops
Otherwise graph is called irreducible. the difficult case

Topics 2: Control Flow Analysis – p. 18/23

CS 426 Topics 2: Control Flow Analysis

University of British Columbia

Reducibility by Intervals

Definition : If G is a flow graph, then the derived flow graph of G, I(G), is:

(a) The nodes of I(G) are the intervals of G

(b) The initial node of I(G) is I(s)

(c) There is an arc from node I(h) to I(k) in I(G) if there is any arc from a node
in I(h) to node k in G.

Definition : The sequence G = G0, G1, ..., Gk is called the derived sequence for G iff

Gi+1 = I(Gi) for 0 ≤ i < k,Gk−1 6= Gk, I(Gk) = Gk. Gk is called the limit flow graph

of G.
Definition : A flow graph is reducible iff its limit flow graph is a single node with no
arc. Otherwise it is called irreducible.

Topics 2: Control Flow Analysis – p. 19/23

CS 426 Topics 2: Control Flow Analysis

University of British Columbia

The T1 and T2 Transformations

T1 : Reduce a self-loop x → x to a single node

T2 : If x → y, and there is no other predecessor of y, then reduce x and y to a
single node.

Example 1:

Topics 2: Control Flow Analysis – p. 20/23

CS 426 Topics 2: Control Flow Analysis

University of British Columbia

The T1 and T2 Transformations

Example 2: An Irreducible graph

Important: If G is reducible, successive applications of T1 and T2 produce the
trivial graph.
⇒ Reducibility by T1 and T2 is equivalent to reducibility by intervals.

Topics 2: Control Flow Analysis – p. 21/23

CS 426 Topics 2: Control Flow Analysis

University of British Columbia

Properties of Irreducible Graphs

The (*) subgraph:

The lines represent edge-disjoint paths.
Nodes s and a may be the same node.

Lemma. The absence of the (*) subgraph in a flow graph is preserved by T1 and
T2.
Proof.

If there is no path x y, then T1 and T2 cannot create such a path.

If two paths are not edge-disjoint, then T1 and T2 will not make them so.

A flow graph is irreducible it contains a (*) subgraph.
Topics 2: Control Flow Analysis – p. 22/23

CS 426 Topics 2: Control Flow Analysis

University of British Columbia

Removing Irreducibility by Node Splitting

If a node has n > 1 predecessors and m > 1 successors, split the node into n

copies:

Claim: T2 is always applicable to a graph after a node is split.

⇒ Any graph can be reduced to the trivial graph by applying T1, T2, and splitting.

Challenge: Finding a “minimal” splitting of a graph is not easy. Typically involves
an NP-complete problem.

Topics 2: Control Flow Analysis – p. 23/23

	Objectives
	A brief catalog of optimizations
	Axes of Classification 1 -- Machine Dependence
	Axes of Classification 2 -- Scope
	Axes of Classification 3 - Effect
	Three Considerations
	Flow Graphs
	Control Flow Graph: CFG
	Dominance in Flow Graphs
	The Dominator Graph
	Dominator Construction
	Identifying Program ``Loops'' in Control Flow Graphs
	Identifying Program ``Loops'' in Control Flow Graphs
	Natural Loops
	Intervals
	Properties of Intervals
	Comparing Loop Definitions
	Reducible and Irreducible Flow Graphs
	Reducibility by Intervals
	The T1 and T2 Transformations
	The T1 and T2 Transformations
	Properties of Irreducible Graphs
	Removing Irreducibility by Node Splitting

