
CS 426 Topic 4: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

Objectives

Understand what SSA form is and how to convert a program into SSA

Define dominance frontiers and an efficient algorithm for computing DFs

Use DFs to efficiently covert a program into SSA form

Understand the notion of control-dependence and how to compute it

Topic 4: SSA and the SSA Construction Algorithm – p. 1/21

CS 426 Topic 4: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

Static Single Assignment (SSA) Form

References

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck,
“Efficiently Computing Static Single Assignment Form and the Control Dependence Graph,”
ACM Trans. on Programming Languages and Systems, 13(4), Oct. 1991, pp. 451–490.

Muchnick, Section 8.11 (partially covered).

What is SSA?

Informally, a program can be converted into SSA form as follows:

Each assignment to a variable is given a unique name
All of the uses reached by that assignment are renamed.

Easy for straight-line code:

V ← 4

Topic 4: SSA and the SSA Construction Algorithm – p. 2/21

CS 426 Topic 4: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

Static Single Assignment (SSA) Form

References

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck,
“Efficiently Computing Static Single Assignment Form and the Control Dependence Graph,”
ACM Trans. on Programming Languages and Systems, 13(4), Oct. 1991, pp. 451–490.

Muchnick, Section 8.11 (partially covered).

What is SSA?

Informally, a program can be converted into SSA form as follows:

Each assignment to a variable is given a unique name
All of the uses reached by that assignment are renamed.

Easy for straight-line code:

V ← 4 V0← 4
← V + 5 ← V0 + 5

V ← 6 V1← 6
← V + 7 ← V1 + 7

Topic 4: SSA and the SSA Construction Algorithm – p. 2/21

CS 426 Topic 4: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

Static Single Assignment with Control Flow

2-way branch: if (...)
X = 5;

else
X = 3;

Y = X;

Topic 4: SSA and the SSA Construction Algorithm – p. 3/21

CS 426 Topic 4: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

Static Single Assignment with Control Flow

2-way branch: if (...)
X = 5;

else
X = 3;

Y = X;

if (...)
X0 = 5;

else
X1 = 3;

X2 = φ(X0, X1);
Y0 = X2;

Topic 4: SSA and the SSA Construction Algorithm – p. 3/21

CS 426 Topic 4: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

Static Single Assignment with Control Flow

2-way branch: if (...)
X = 5;

else
X = 3;

Y = X;

if (...)
X0 = 5;

else
X1 = 3;

X2 = φ(X0, X1);
Y0 = X2;

While loop:

j=1;
while (j < X)

++j;
N = j;

Topic 4: SSA and the SSA Construction Algorithm – p. 3/21

CS 426 Topic 4: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

Static Single Assignment with Control Flow

2-way branch: if (...)
X = 5;

else
X = 3;

Y = X;

if (...)
X0 = 5;

else
X1 = 3;

X2 = φ(X0, X1);
Y0 = X2;

While loop:

j=1;
while (j < X)

++j;
N = j;

j = 1;
if (j ≥ X)

goto E;
S:

j = j+1;
if (j < X)

goto S;
E:

N = j;

Topic 4: SSA and the SSA Construction Algorithm – p. 3/21

CS 426 Topic 4: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

Static Single Assignment with Control Flow

2-way branch: if (...)
X = 5;

else
X = 3;

Y = X;

if (...)
X0 = 5;

else
X1 = 3;

X2 = φ(X0, X1);
Y0 = X2;

While loop:

j=1;
while (j < X)

++j;
N = j;

j = 1;
if (j ≥ X)

goto E;
S:

j = j+1;
if (j < X)

goto S;
E:

N = j;

j0 = 1;
if (j0 < X0)

goto E;
S:

j1 = φ(j0, j2);
j2 = j1+1;
if (j2 < X0)

goto S;
E:

j3 = φ(j0, j2);
N0 = j3;

Topic 4: SSA and the SSA Construction Algorithm – p. 3/21

CS 426 Topic 4: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

Review of Some Basic Terms

Value :

Storage location (register or memory)

Variable :

Pointer :

Alias :

Reference to a variable :

Use of a variable : A use of variable X is a reference that may read the value
stored in the location named X.

Definition of a variable : A definition (def) of a variable X is a reference that
may store a value into the location named X.

Examples: Assignment; FOR; input I/O

Ambiguity :

Unambiguous def : guaranteed to store to X must

Ambiguous def : may store to X may

Similarly, ambiguous/unambiguous use.
Q. Where does ambiguity come from?

Topic 4: SSA and the SSA Construction Algorithm – p. 4/21

CS 426 Topic 4: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

Definition of SSA Form

Definition (φ Functions) :
In a basic block B with N predecessors, P1, P2, . . . , PN ,

X = φ(V1, V2, . . . , VN)

assigns X = Vj if control enters block B from Pj , 1 ≤ j ≤ N .

Properties of φ-functions:

φ is not an executable operation.
φ has exactly as many arguments as the number of incoming BB edges
Think about φ argument Vi as being evaluated on CFG edge from
predecessor Pi to B

Definition (SSA form) :
A program is in SSA form if:
1. each variable is assigned a value in exactly one statement
2. each use of a variable is dominated by the definition

Topic 4: SSA and the SSA Construction Algorithm – p. 5/21

CS 426 Topic 4: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

Which Variables Can We Convert?

Which of these can we convert? And when?

Scalars?

Arrays?

Structures?

Topic 4: SSA and the SSA Construction Algorithm – p. 6/21

CS 426 Topic 4: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

Which Variables Can We Convert?

Which of these can we convert? And when?

Scalars?

Arrays?

Structures?

General Criteria

Convert all variables to SSA form, except . . .

Arrays: Array elements do not have an explicit name

Variables that may have aliases: do not have a unique name

Volatile variables: can be modified “unexpectedly”

E.g., In LLVM, only variables in virtual registers are in SSA form.

Topic 4: SSA and the SSA Construction Algorithm – p. 6/21

CS 426 Topic 4: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

Advantages of SSA

Explicit def-use and use-def chains:
Def-use chain : The set of uses reached by a particular definition.
Use-def chain : The set of defs reaching a particular use.
These are foundation of many dataflow optimizations.
=⇒ Specifically enables sparse optimizations .

Compact, flow-sensitive def-use information
⇐= fewer def-use edges per variable: one per CFG edge

No anti- and output dependences on SSA variables

Explicit merging of values (φ): key additional information

Can serve as IR for code transformations

Topic 4: SSA and the SSA Construction Algorithm – p. 7/21

CS 426 Topic 4: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

Disadvantages of SSA

Size of SSA program is O(N2) for an ordinary program with N variables.

Usually not used for structures and arrays

May not be used for scalar variables with aliases

If used as IR: Must be converted back to code (Not too bad)

Otherwise: Must be recomputed frequently (Often bad)

Topic 4: SSA and the SSA Construction Algorithm – p. 8/21

CS 426 Topic 4: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

Constructing SSA Form

Simple method

1. insert φ-functions for every variable at every join

2. solve REACHING DEFINITIONS

3. rename each use to the def that reaches it (unique)

What’s wrong with this approach

1. too many φ-functions (precision)

2. too many φ-functions (space)

3. too many φ-functions (time)

Might be good enough for some transformations

Everything else is an optimization

Topic 4: SSA and the SSA Construction Algorithm – p. 9/21

CS 426 Topic 4: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

The SSA-Construction Algorithm: Intuition

Key question : Where do we place φ-functions?

Example:

1: if (...) then {
2: V = ...;
3: if (...) {
4: U = V + 1; // No phi for V needed here
5: } else {
6: U = V + 2; // No phi for V needed here
7: }
8: W = U + 1; // No phi for V needed here
9: }
10: ... // phi for V _is_ needed here

Topic 4: SSA and the SSA Construction Algorithm – p. 10/21

CS 426 Topic 4: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

The SSA-Construction Algorithm: Intuition(cont)

Informal Conditions:

If node X contains an assignment to a variable V , then a φ must be inserted
in each node Z such that:
1. there is a non-null path X→+ Z, and

2. there is a path from ENTRY to Z that does not go through X,

3. Z is the first node on the path X→+ Z that satisfies (2).

The Dominance Frontier of the node X is exactly the set of nodes Z that
satisfy the above condition!

Intuition for Placement Conditions:

(1) =⇒ the value of V computed in X reaches Z

(2) =⇒ there is a path that does not go through X, so some other value of V reaches Z along that path
(ignore bugs due to uses of uninitialized variables). So, two values must be merged at X with a φ.

(3) =⇒ The φ for the value coming from X is placed in Z and not in some earlier node on the path X
→+ Z.

Topic 4: SSA and the SSA Construction Algorithm – p. 11/21

CS 426 Topic 4: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

The SSA-Construction Algorithm: Intuition (cont)

Iterating the Placement Conditions:

After a φ is inserted at Z, the above process must be repeated for Z
because the φ is effectively a new definition of V .

For each node X and variable V , there must be at most one φ for V in X.
This means that the above iterative process can be done with a single
worklist of nodes for each variable V , initialized to handle all original
assignment nodes X simultaneously.

Flavors of SSA:

Minimal SSA : As few as possible, subject to above condition

Pruned SSA : As few as possible, subject to above condition and no dead φ-functions

Topic 4: SSA and the SSA Construction Algorithm – p. 12/21

CS 426 Topic 4: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

Dominance Frontiers

Dominance: Recall definitions of:

1. X dominates Y, or X dom Y or X≫ Y

2. X strictly dominates Y, or X≫ Y

3. X is the immediate dominator of Y, or X = idom(Y)

4. Dominator tree

Dominance frontiers:

The dominance frontier of node X is the set of nodes Y such that X dominates a predecessor of Y, but
X does not strictly dominate Y.

DF(X) = {Y | ∃ p ∈ Pred(Y) : X≫ p and X 6≫ Y}

The dominance frontier can be subdivided into two components:
DFlocal(X) ≡ {Y ∈ Succ(X) | X 6≫ Y}
DFup(Z) ≡ {Y ∈ DF(Z) | idom(Z) 6≫ Y}

Then,

DF(X) = DFlocal(X)
⋃ ⋃

Z∈Children(X)

DFup(Z)

Topic 4: SSA and the SSA Construction Algorithm – p. 13/21

CS 426 Topic 4: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

Computing Dominance Frontiers

Algorithm for computing dominance frontiers

for each X in a bottom-up traversal of the dominator tree
DF(X)← ∅
for each Y ∈ succ(X) /* local */

if idom(Y) 6= X then
DF(X)← DF(X)

⋃
{Y}

for each Z ∈ children(X) /* up */
for each Y ∈ DF(Z)

if idom(Y) 6= X then
DF(X)← DF(X)

⋃
{Y}

Theorem 1

The dominance frontier algorithm is correct.

Refer to paper for proof.

Topic 4: SSA and the SSA Construction Algorithm – p. 14/21

CS 426 Topic 4: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

Iterated Dominance Frontiers

Dominance frontiers for a set of nodes

Extend the dominance frontier mapping from nodes to sets of nodes:
DF(L) =

⋃
X∈L

DF (X)

The iterated dominance frontier DF+(L) is the limit of the sequence:

DF1 = DF(L)
DFi+1 = DF(L

⋃
DFi)

Theorem 2

The set of nodes that need φ-functions for any variable V is the iterated
dominance frontier DF+(L), where L is the set of nodes that may modify
V.
Refer to paper for proof.

Topic 4: SSA and the SSA Construction Algorithm – p. 15/21

CS 426 Topic 4: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

Computing Static Single Assignment Form

Complete algorithm

Compute the dominance frontiers

Insert φ-functions

Rename the variables

Theorem 3

Any program can be put into minimal SSA form using this algorithm.
Refer to paper for proof.

Topic 4: SSA and the SSA Construction Algorithm – p. 16/21

CS 426 Topic 4: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

Computing Static Single Assignment Form

Inserting φ-functions
for each variable V

HasAlready← ∅
EverOnWorkList← ∅
WorkList← ∅
for each node X that may modify V

EverOnWorkList← EverOnWorkList
⋃

{X}
WorkList←WorkList

⋃
{X}

while WorkList 6= ∅
remove X from W
for each Y ∈ DF(X)

if Y 6∈ HasAlready then
insert a φ-node for V at Y
HasAlready← HasAlready

⋃
{Y}

if Y 6∈ EverOnWorkList then
EverOnWorkList← EverOnWorkList

⋃
{Y}

WorkList←WorkList
⋃

{Y}

Topic 4: SSA and the SSA Construction Algorithm – p. 17/21

CS 426 Topic 4: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

Renaming the Variables

Intuition:
Renaming defs is easy. To rename each use of V :

(a) Use in a non-φ statement : Use immediately dominating definition of V (+ φ nodes inserted for V).

=⇒ preorder on Dominator Tree!

(b) Use in a φ operand : Use definition that immediately dominates incoming CFG edge (not φ)

=⇒ rename the φ operand when processing the predecessor basic block!

Data Structures:

Stacks - an array of stacks, one for each original variable V

Stacks[V] = subscript of most recent definition of V. Initially, Stacks[V] = EmptyStack, ∀ V

Counters - an array of counters, one for each original variable
Counters[V] = number of assignments to V processed, Initially. Counters[V] = 0, ∀ V

procedure GenName(Variable V)
1. i← Counters[V]

2. replace V by Vi

3. push i onto Stacks[V]

4. Counters[V]← i + 1

Topic 4: SSA and the SSA Construction Algorithm – p. 18/21

CS 426 Topic 4: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

Computing Static Single Assignment Form

The Renaming Algorithm Initially, call Rename(Entry)

procedure Rename(Block X)
for each φ-node P in X

GenName(LHS(P))
for each statement A in X

for each variable V ∈ RHS(A)
replace V by Vi, where i = Top(Stacks[V])

for each variable V ∈ LHS(A)
GenName(V)

for each Y ∈ Succ(X)
j← position in Y’s φ-functions corresponding to X
for each φ-node P in Y

replace the jth operand of RHS(P) by Vi

where i = Top(Stacks[V])
for each Y ∈ Children(X)

Rename(Y)
for each φ-node or statement A in X

for each Vi ∈ LHS(A)
pop Stacks[V]

Topic 4: SSA and the SSA Construction Algorithm – p. 19/21

CS 426 Topic 4: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

Translating out of Static Single Assignment form

Overview:
1. Dead-code elimination (prune dead φs)

2. Replace φ-functions with copies in predecessors

3. Register allocation with copy coalescing
Before (2)

H
H

H
H
Hj

�
�

�
�

��

�
�

�
�

��

H
H

H
H
Hj

if (. . .)B1

X0 ← 5
B2

X1 ← 3
B3

X2 ← φ(X0, X1)
Y← X2

B4

After (2)

H
H
HHj

�
�

���

�
�

�
�

��

H
H

H
H
Hj

if (. . .)B1

X0 ← 5
X2 ← X0

B2

X1 ← 3
X2 ← X1

B3

Y← X2
B4

Topic 4: SSA and the SSA Construction Algorithm – p. 20/21

CS 426 Topic 4: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

Control Dependence

Definition: In a CFG, node Y is control-dependent on node B if

1. There is a non-empty path N0 = B,N1, N2, ..., Nk = Y such that Y
postdominates N1 . . . Nk, and

2. Y does not strictly postdominate B

Definition: The Reverse Control Flow Graph (RCFG) of a CFG has the same
nodes as CFG and has edge Y → X if X → Y is an edge in CFG.

Topic 4: SSA and the SSA Construction Algorithm – p. 21/21

CS 426 Topic 4: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

Control Dependence (continued)

Computing Control Dependence

Key observation: Node Y is control-dependent on B iff B ∈ DF (Y) in RCFG.

Algorithm:

1. Build RCFG

2. Build dominator tree for RCFG

3. Compute dominance frontiers for RCFG

4. Compute CD(B) ≡ {Y : B ∈ DF (Y)}.
CD(B) gives the nodes that are control-dependent on B.

Topic 4: SSA and the SSA Construction Algorithm – p. 22/21

	Objectives
	Static Single Assignment (SSA) Form
	Static Single Assignment (SSA)
Form

	Static Single Assignment with Control Flow
	Static Single Assignment with Control Flow
	Static Single Assignment with Control Flow
	Static Single Assignment with Control Flow
	Static Single Assignment with Control Flow

	Review of Some Basic Terms
	Definition of SSA Form
	Which Variables Can We Convert?
	Which Variables Can We Convert?

	Advantages of SSA
	Disadvantages of SSA
	Constructing {Large sl SSA} Form
	The {Large sl SSA}-Construction Algorithm: Intuition
	The {Large sl SSA}-Construction Algorithm: Intuition(cont)
	The {Large sl SSA}-Construction Algorithm: Intuition (cont)
	Dominance Frontiers
	Computing Dominance Frontiers
	Iterated Dominance Frontiers
	Computing Static Single Assignment Form
	Computing Static Single Assignment Form
	Renaming the Variables
	Computing Static Single Assignment Form
	Translating out of Static Single Assignment form
	Control Dependence
	Control Dependence (continued)

