
CS 426 Topic 5: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

Objectives

Understand why conditional constant propagation is needed

Apply the SCCP algorithm to propagate constants

Understand loop induction variable optimizations

Get an intuition as to how the Induction variable optimization works

Topic 5: SSA and the SSA Construction Algorithm – p. 1/31

CS 426 Topic 5: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

Static Single Assignment-based Optimization

Widely Used SSA-Based Optimizations

Dead Code Elimination (DCE)

Loop-Invariant Code Motion (LICM)

Sparse Conditional Constant Propagation (SCCP)

Strength Reduction of Induction Variables

Global Value Numbering (GVN)

Topic 5: SSA and the SSA Construction Algorithm – p. 2/31

CS 426 Topic 5: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

Static Single Assignment-based Optimization(cont)

Dataflow optimizations for which SSA is insufficient

Copy Propagation

Global Common Subexpression Elimination (GCSE)

Partial Redundancy Elimination (PRE)

Redundant Load Elimination

Dead or Redundant Store Elimination

Code Placement Optimizations

Topic 5: SSA and the SSA Construction Algorithm – p. 3/31

CS 426 Topic 5: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

Sparse Conditional Constant Propagation: SCCP

Read this paper if you have
not read it before:

Wegman and Zadeck, Constant Propagation With
Conditional Branches, TOPLAS 1991.

Goals

Identify and replace SSA variables with constant values

Delete infeasible branches due to discovered constants

Safety

Analysis: Explicit propagation of constant expressions

Transformation: Most languages allow removal of computations

Profitability

Fewer computations, almost always (except pathological cases)

Opportunity

Symbolic constants, conditionally compiled code, simple ICG, ...

Topic 5: SSA and the SSA Construction Algorithm – p. 4/31

CS 426 Topic 5: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

SCCP: Key Algorithm Strengths

Conditional Constant Propagation

Simultaneously finds constants + eliminates infeasible branches.

Optimistic

Assume every variable may be constant (⊤), until proven otherwise.
Pessimistic ≡ initially assume nothing is constant (⊥).

Sparse

Only propagates variable values where they are actually used or defined
(using def-use chains in SSA form).

SSA vs. def-use chains

Much faster: SSA graph has fewer edges than def-use graph

Paper claims SSA catches more constants (not convincing)

Topic 5: SSA and the SSA Construction Algorithm – p. 5/31

CS 426 Topic 5: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

SCCP Examples

For Ex. 1, we could do constant propagation and condition evaluation separately,
and repeat until no changes. This separate approach is not sufficient for Ex. 3.

Example 1: Needs Condition Evaluation (can be done separately)
J = 1;
...
if (J > 0) I = 1; // Always produces 1
else I = 2;

Example 2: Needs “Optimistic” initial assumption
I = 1;
...
while (...) {

J = I;
I = f(...);
...
I = J; // Always produces 1

}

Topic 5: SSA and the SSA Construction Algorithm – p. 6/31

CS 426 Topic 5: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

SCCP Examples

Example 3: Needs simultaneous condition evaluation + constant p ropagation
I = 1;
...
while (...) {

J = I;
I = f(...);
...
if (J > 0) I = J; // Always produces 1

}

Repeatedly doing constant propagation and condition evaluation separately will
not prove I or J constant.

Topic 5: SSA and the SSA Construction Algorithm – p. 7/31

CS 426 Topic 5: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

CONST Lattice and Example

Lattice L

Lattice L ≡ {⊤, Ci,⊥}.
⊤ intuitively means “May be
constant.”
⊥ intuitively means “Not constant.”

Meet Operator, ⊓

⊤ ⊓X = X, ∀X ∈ L

⊥ ⊓X = ⊥, ∀X ∈ L

Ci ⊓ Cj =

{

Ci, iff i = j,

⊥, otherwise

Intuition: A Partial Order ≺

⊥ ≺ Ci for any Ci.
Ci ≺ ⊤ for any Ci.
Ci 6≺ Cj (i.e., no ordering).

Meet of X and Y (X ⊓ Y) is the greatest value � both X and Y .

⊤
�������9
�

��+ ?

Q
QQs

XXXXXXXz

. . . C
−k . . . C

−1 C0 C1 . . . Ck . . .
XXXXXXXz

Q
QQs?

�
��+

�������9
⊥

Topic 5: SSA and the SSA Construction Algorithm – p. 8/31

CS 426 Topic 5: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

SCCP Overview

Assume:

Only assignment or branch statements

Every non-φ statement is in separate BB

Key Ideas

1. Constant propagation lattice = { ⊤, Ci,⊥ }

2. Initially : every def. has value ⊤ (“may be constant”).
Initially : every CFG edge is infeasible, except edges from s

3. Use 2 worklists: FlowWL, SSAWL
(a) FlowWL: insert CFG edge if potentially executable
(b) SSAWL: insert SSA edge if value of def. changes

4. Highlights:

Visit S only if some incoming edge is executable
Ignore φ argument if incoming CFG edge not executable
If variable changes value, add SSA out-edges to SSAWL
If CFG edge executable, add to FlowWL

Topic 5: SSA and the SSA Construction Algorithm – p. 9/31

CS 426 Topic 5: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

High-Level SCCP Algorithm (1 of 2)

SCCP()
Initialize(ExecFlags[], LatCell[], FlowWL, SSAWL);
while ((Edge E = GetEdge(FlowWL ∪ SSAWL)) != 0)

if (E is a flow edge && ExecFlag[E] == false)
ExecFlag[E] = true
VisitPhi(φ) ∀ φ ∈ E->sink
if (first visit to E->sink via flow edges)

VisitInst(E->sink)
if (E->sink has only one outgoing flow edge Eout)

add Eout to FlowWL
else if (E is an SSA edge)

if (E->sink is a φ node)
VisitPhi(E->sink)

else if (E->sink has 1 or more executable in-edges)
VisitInst(E->sink)

Topic 5: SSA and the SSA Construction Algorithm – p. 10/31

CS 426 Topic 5: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

High-Level SCCP Algorithm (2 of 2)

VisitPhi(φ) :
for (all operands Uk of φ)

if (ExecFlag[InEdge(k)] == true)
LatCell(φ) ⊓ = LatCell(Uk)
if (LatCell(φ) changed)

add SSAOutEdges(φ) to SSAWL

VisitInst(S) : Many errors in Muchnick
val = Evaluate(S)
LatCell(S) = val
if (LatCell(S) changed) // cannnot be Top

if (S is Assignment)
add SSAOutEdges(S) to SSAWL

else // S must be a Branch
Add one or both outgoing edges to FlowWL

Topic 5: SSA and the SSA Construction Algorithm – p. 11/31

CS 426 Topic 5: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

SCCP Example

Example 3: Needs simultaneous condition evaluation + constant p ropagation
S: // entry BB is empty
B0: I0 = 1
B1: if (I0 < N0)
B2: I1 = φ(I0, I4)

J0 = I1
B3: I2 = f(. . .)
B4: if (J0 > 0)
B5: { I3 = J0 }
B6: I4 = φ(I2, I3)

if (I4 < N0)
B7: goto B1
B8: . . .

Topic 5: SSA and the SSA Construction Algorithm – p. 12/31

CS 426 Topic 5: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

SCCP Example

Some Steps of SCCP Algorithm

Edge Call LatVal Edges Inserted

(1) S → B0 VisitInst(I0) I0 = 1 I0 → if, I0 → I1, B0→ B1

. . .

. . .

Topic 5: SSA and the SSA Construction Algorithm – p. 13/31

CS 426 Topic 5: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

SCCP Example

Some Steps of SCCP Algorithm

Edge Call LatVal Edges Inserted

(1) S → B0 VisitInst(I0) I0 = 1 I0 → if, I0 → I1, B0→ B1

. . .

(2) I0 → if VisitInst(if) — B1→ B2, B1→ B8

. . .

Topic 5: SSA and the SSA Construction Algorithm – p. 14/31

CS 426 Topic 5: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

SCCP Example

Some Steps of SCCP Algorithm

Edge Call LatVal Edges Inserted

(1) S → B0 VisitInst(I0) I0 = 1 I0 → if, I0 → I1, B0→ B1

. . .

(2) I0 → if VisitInst(if) — B1→ B2, B1→ B8

(3) I0 → I1 VisitPhi(I1) I1 = 1 ⊓ ⊤ = 1 I1 → J0

Topic 5: SSA and the SSA Construction Algorithm – p. 15/31

CS 426 Topic 5: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

SCCP Example

Some Steps of SCCP Algorithm

Edge Call LatVal Edges Inserted

(1) S → B0 VisitInst(I0) I0 = 1 I0 → if, I0 → I1, B0→ B1

. . .

(2) I0 → if VisitInst(if) — B1→ B2, B1→ B8

(3) I0 → I1 VisitPhi(I1) I1 = 1 ⊓ ⊤ = 1 I1 → J0

(4) I1 → J0 VisitInst(J0) J0 = 1 J0 → if(. . .)

Topic 5: SSA and the SSA Construction Algorithm – p. 16/31

CS 426 Topic 5: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

SCCP Example

Some Steps of SCCP Algorithm

Edge Call LatVal Edges Inserted

(1) S → B0 VisitInst(I0) I0 = 1 I0 → if, I0 → I1, B0→ B1

. . .

(2) I0 → if VisitInst(if) — B1→ B2, B1→ B8

(3) I0 → I1 VisitPhi(I1) I1 = 1 ⊓ ⊤ = 1 I1 → J0

(4) I1 → J0 VisitInst(J0) J0 = 1 J0 → if(. . .)

(5) J0 → if(. . .) VisitInst(if) — B4→ B5 (not B4→ B6)

Topic 5: SSA and the SSA Construction Algorithm – p. 17/31

CS 426 Topic 5: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

SCCP Example

Some Steps of SCCP Algorithm

Edge Call LatVal Edges Inserted

(1) S → B0 VisitInst(I0) I0 = 1 I0 → if, I0 → I1, B0→ B1

. . .

(2) I0 → if VisitInst(if) — B1→ B2, B1→ B8

(3) I0 → I1 VisitPhi(I1) I1 = 1 ⊓ ⊤ = 1 I1 → J0

(4) I1 → J0 VisitInst(J0) J0 = 1 J0 → if(. . .)

(5) J0 → if(. . .) VisitInst(if) — B4→ B5 (not B4→ B6)

(6) B4→ B5 VisitInst(I3) I3 = 1 I3 → I4, B5→ B6

Topic 5: SSA and the SSA Construction Algorithm – p. 18/31

CS 426 Topic 5: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

SCCP Example

Some Steps of SCCP Algorithm

Edge Call LatVal Edges Inserted

(1) S → B0 VisitInst(I0) I0 = 1 I0 → if, I0 → I1, B0→ B1

. . .

(2) I0 → if VisitInst(if) — B1→ B2, B1→ B8

(3) I0 → I1 VisitPhi(I1) I1 = 1 ⊓ ⊤ = 1 I1 → J0

(4) I1 → J0 VisitInst(J0) J0 = 1 J0 → if(. . .)

(5) J0 → if(. . .) VisitInst(if) — B4→ B5 (not B4→ B6)

(6) B4→ B5 VisitInst(I3) I3 = 1 I3 → I4, B5→ B6

(7) I3 → I4 VisitInst(I4) I4 = ⊤ ⊓ 1 = 1 I4 → I1

. . .

Topic 5: SSA and the SSA Construction Algorithm – p. 19/31

CS 426 Topic 5: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

SCCP Example

Some Steps of SCCP Algorithm

Edge Call LatVal Edges Inserted

(1) S → B0 VisitInst(I0) I0 = 1 I0 → if, I0 → I1, B0→ B1

. . .

(2) I0 → if VisitInst(if) — B1→ B2, B1→ B8

(3) I0 → I1 VisitPhi(I1) I1 = 1 ⊓ ⊤ = 1 I1 → J0

(4) I1 → J0 VisitInst(J0) J0 = 1 J0 → if(. . .)

(5) J0 → if(. . .) VisitInst(if) — B4→ B5 (not B4→ B6)

(6) B4→ B5 VisitInst(I3) I3 = 1 I3 → I4, B5→ B6

(7) I3 → I4 VisitInst(I4) I4 = ⊤ ⊓ 1 = 1 I4 → I1

. . .

(8) I4 → I1 VisitInst(I1) I1 = 1 ⊓ 1 = 1 — (I1 unchanged)

. . .

Topic 5: SSA and the SSA Construction Algorithm – p. 20/31

CS 426 Topic 5: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

Induction Variable Substitution

Auxiliary Induction Variable

An auxiliary induction variable in a loop (DO i = L, U, s) is any variable
that can be expressed as

c× i+m

at every point where it is used in the loop, where c and m are loop-invariant,
but m may be different at each use.

Optimization Goals

Identify linear expression for each auxiliary induction variable
=⇒ More effective dependence analysis, loop transformations

Optional : Substitute linear expression in place of every use

Eliminate expensive or loop-invariant operations from loop

Topic 5: SSA and the SSA Construction Algorithm – p. 21/31

CS 426 Topic 5: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

Operator Strength Reduction

General Goal

Replace expensive operations by cheaper ones

Primitive Operations: Many Examples

n * 2→ n << 1 (similarly, n/2)

n ** 2→ n * n

For Recurrences

Example: (base + (i-1) * 4)
Such recurrences are commonplace in array address calculations
Note: Aux. induction variables are just a special case

Loop termination test: i < 100:
Can replace and eliminate an induction variable.
This is called Linear Function Test Replacement.

Topic 5: SSA and the SSA Construction Algorithm – p. 22/31

CS 426 Topic 5: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

Strength Reduction for Recurrences

Strategy

Identify operations of the form:

x← iv× c, x← iv± c

iv : induction variable or another recurrence
c : loop-invariant variable
Note: Fundamentally a dataflow problem

eliminate multiplications from inside the loop

eliminate induction variable if only remaining use is in loop termination test

Topic 5: SSA and the SSA Construction Algorithm – p. 23/31

CS 426 Topic 5: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

Strength Reduction Example

do i = 1 to 100
sum = sum + a(i)

enddo

Source code

sum = 0.0
i = 1

L: t1 = i - 1
t2 = t1 * 4
t3 = t2 + a
t4 = load t3
sum = sum + t4
i = i + 1
if (i <= 100) goto L

Intermediate code

sum0 = 0.0
i0 = 1

L: sum1 = φ(sum0,sum2)
i1 = φ(i0,i2)
t10 = i1 - 1
t20 = t10 * 4
t30 = t20 + a
t40 = load t30

sum2 = sum1 + t40

i2 = i1 + 1
if (i2 <= 100) goto L

SSA form

Topic 5: SSA and the SSA Construction Algorithm – p. 24/31

CS 426 Topic 5: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

Strength Reduction Example (Continued)

sum0 = 0.0
i0 = 1
t50 = a

L: sum1 = φ(sum0,sum2)
i1 = φ(i0,i2)
t51 = φ(t50,t52)
t40 = load t50

sum2 = sum1 + t40

i2 = i1 + 1
t52 = t51 + 4
if (i2 <= 100) goto L

After strength reduction

sum0 = 0.0
t50 = a

L: sum1 = φ(sum0,sum2)
t51 = φ(t50,t52)
t40 = load t50

sum2 = sum1 + t40

t52 = t51 + 4
if (t52 <= 396 + a) goto L

After LFTR

Topic 5: SSA and the SSA Construction Algorithm – p. 25/31

CS 426 Topic 5: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

Approaches to Strength Reduction

Cocke and Kennedy, CACM 1977 (superseded by the next one).

Allen, Cocke and Kennedy, “Reduction of Operator Strength,” In S. Muchnick and
N. Jones, editors, Program Flow Analysis: Theory and Applications, pages
79–101. Prentice-Hall, 1981.

Classical Approach

ACK: Classic algorithm, widely used.

works on “loops” (Strongly Connected Regions) of flow graph

uses def-use chains to find induction variables and recurrences

worklist to find recurrences defined from other recurrences

y ← x× a+ b, z ← y ± c

Topic 5: SSA and the SSA Construction Algorithm – p. 26/31

CS 426 Topic 5: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

Approaches to Strength Reduction

Cooper, Simpson & Vick, 2001, “Operator Strength Reduction,” Trans. Prog.
Lang. Sys. 23(5), Sept. 2001.

SSA-based algorithm

Same effectiveness as ACK, but faster and simpler

Identify induction variables from SCCs in the SSA graph

Mark each recurrence as an induction variable to find recurrences defined
from other recurrences

⇒ order of SCCs is crucial
⇒ process an operation after all its operands

Topic 5: SSA and the SSA Construction Algorithm – p. 27/31

CS 426 Topic 5: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

Tarjan’s SCC algorithm Drives the Process

DFS(node)

node.DFSnum← nextDFSnum ++

node.visited← TRUE

node.low← node.DFSnum

PUSH(node)

for each o ∈ {operands of node}

if not o.visited

DFS(o)
node.low← MIN(node.low, o.low)

if o.DFSnum < node.DFSnum and o ∈ stack

node.low← MIN(o.DFSnum, node.low)

if node.low = node.DFSnum

SCC← ∅

do
x← POP()
SCC← SCC ∪ {x}

while x 6= node

→ ProcessSCC(SCC) ←

with one small addition . . .

Topic 5: SSA and the SSA Construction Algorithm – p. 28/31

CS 426 Topic 5: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

Process Each SCC

ProcessSCC(SCC)
if (SCC is a single node n : X = iv × rc or X = iv ± rc)

Replace(n, iv, rc)
else

if (all nodes in SCC are ∈ {φ,+,−,COPY }
and all external operands are loop-invariant)

// E.g., i2 = φ(i0, i2) + c

// May have multiple +,−,, COPY nodes

Mark all nodes of SCC as induction variables
n.header = Header(SCC) ∀n ∈ SCC

else
// SCC is not an induction variable
for each node n ∈ SCC

if (n : X = iv × rc or X = iv ± rc)
Replace(n, iv, rc)

else
n.header = null

endif
endif

endif
end // ProcessSCC()

Topic 5: SSA and the SSA Construction Algorithm – p. 29/31

CS 426 Topic 5: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

Operator Strength Reduction Algorithm (contd.)

Replace an IV with a copy from a reduced version

Replace(n, iv, rc)
Result = Reduce(n.op, iv, rc)
Replace code for n with copy: n.LHS = Result

n.header ←− iv.header
end // Replace()

Topic 5: SSA and the SSA Construction Algorithm – p. 30/31

CS 426 Topic 5: SSA and the SSA Construction Algorithm

University of British Columbia (UBC)

Operator Strength Reduction Algorithm (contd.)

Copy and simplify code for an induction variable:

Reduce(opcode, iv, rc)
// Reuse computation of iv if it exists already

IV copy = HashLookup(opcode, iv, rc)
if (IV copy found)

return IVcopy

IV copy = Copy of iv and its SCC
HashInsert(opcode, iv, rc, IV copy)

For each operand o of IV copy

if (o ∈ SCC)
Reduce(opcode, o, rc)

else
// Insert SSA code to compute Result directly:
// (a) recursively strength-reduce operands w.r.t. outer loops

// (b) initialize Result outside loop

// (c) increment Result inside loop

HashInsert(opcode, iv, rc, IV copy)
return IV copy

end // Reduce()

Topic 5: SSA and the SSA Construction Algorithm – p. 31/31

	Objectives
	Static Single Assignment-based Optimization
	Static Single Assignment-based Optimization(cont)
	Sparse Conditional Constant Propagation: SCCP
	SCCP: Key Algorithm Strengths
	SCCP Examples
	SCCP Examples
	CONST Lattice and Example
	SCCP Overview
	High-Level SCCP Algorithm (1 of 2)
	High-Level SCCP Algorithm (2 of 2)
	SCCP Example
	SCCP Example
	SCCP Example
	SCCP Example
	SCCP Example
	SCCP Example
	SCCP Example
	SCCP Example
	SCCP Example
	Induction Variable Substitution
	Operator Strength Reduction
	Strength Reduction for Recurrences
	Strength Reduction Example
	Strength Reduction Example (Continued)
	Approaches to Strength Reduction
	Approaches to Strength Reduction
	Tarjan's SCC algorithm Drives the Process
	Process Each SCC
	Operator Strength Reduction Algorithm (contd.)
	Operator Strength Reduction Algorithm (contd.)

