
CS 426 Topic 7: Global Dataflow Analysis

University of British Columbia

Why Global Dataflow Analysis?

Answer key questions at compile-time about the
flow of values and other program properties over control-flow paths

Compiler fundamentals

What defs. of x reach a given use of x (and vice-versa)?

What {<ptr,target>} pairs are possible at each statement?

Scalar dataflow optimizations

Are any uses reached by a particular definition of x?

Has an expression been computed on all incoming paths?

What is the innermost loop level at which a variable is defined?

Correctness and safety:

Is variable x defined on every path to a use of x?

Is a pointer to a local variable live on exit from a procedure?

Parallel program optimization, program understanding, ...

Topic 7: Global Dataflow Analysis – p. 1/15

CS 426 Topic 7: Global Dataflow Analysis

University of British Columbia

Common Applications of Global Dataflow Analysis

Preliminary Analyses

Pointer Analysis

Detecting uninitialized variables

Type inference

Strength Reduction for Induction
Variables

Static Computation Elimination

Dead Code Elimination (DCE)

Constant Propagation

Copy Propagation

Redundancy Elimination

Local Common Subexpression
Elimination (CSE)

Global Common Subexpression
Elimination (GCSE)

Loop-invariant Code Motion
(LICM)

Partial Redundancy Elimination
(PRE)

Code Generation

Liveness analysis for register allo-
cation

Topic 7: Global Dataflow Analysis – p. 2/15

CS 426 Topic 7: Global Dataflow Analysis

University of British Columbia

Dataflow Analysis Basics

Point: A location in a basic block just before or after some statement.

Entry(B): the point before first statement in B

Exit (B): the point after last statement in B

Path: A path from p1 to pn is a sequence of points p1, p2, . . . pn such that
(intuitively) some execution can visit these points in order.
[See book for formal definition]

Kill of a Definition: A definition d of variable V is killed on a path if there is an
unambiguous definition of V on that path.

Kill of an Expression: An expression e is killed on a path if there is a possible
definition of any of the variables of e on that path.

Topic 7: Global Dataflow Analysis – p. 3/15

CS 426 Topic 7: Global Dataflow Analysis

University of British Columbia

An Example Dataflow Problem: Available Expressions

Definitions

Available expressions: x+ y is available at point p if:
(a) every path to p evaluates x+ y

(b) between the last such evaluation and p on each path, neither x nor y
is modified.

Kill: Block B kills x+ y if it may assign to x or y, and it does not
subsequently recompute x+ y

Generate: Block B generates x+ y if it definitely evaluates x+ y, and it does
not subsequently modify x or y.

Topic 7: Global Dataflow Analysis – p. 4/15

CS 426 Topic 7: Global Dataflow Analysis

University of British Columbia

Dataflow variables:

Let U = universal set of expressions in the program. Then:
in[B] = {ǫ ∈ U | ǫ is avail at entry to B}

out[B] = {ǫ ∈ U | ǫ is avail at exit from B}

e_gen[B] = {ǫ ∈ U | ǫ is generated by B}

e_kill[B] = {ǫ ∈ U | ǫ is killed by B}

Topic 7: Global Dataflow Analysis – p. 5/15

CS 426 Topic 7: Global Dataflow Analysis

University of British Columbia

Exercise

Find in, out, egen and ekill for each block:
int main(int argc, char** argv) {

B0: int i, j, k, *pi = &i, *q, **pp = π

i = (argc > 1)? atoi(argv[1]) : 10;

B4: j = i * i + 1;

k = i + j;

q = &k;

if (j > i) {

B5: int tmp=j; j = i; i = tmp;

}

B6: pp = &q;

**pp = 0;

if (i > 0)

B7: printf("%d, %d, %d\n", i * i, j + i, j > i);

return 0;

}

Topic 7: Global Dataflow Analysis – p. 6/15

CS 426 Topic 7: Global Dataflow Analysis

University of British Columbia

Dataflow Analysis for Available Expressions

Dataflow equations:

In[B] =
⋂

p:p→B

Out[p]

Out[B] = e_gen[B]
⋃

(In[B]− e_kill[B])

Initial values:

In[s] = φ

Out[s] = e gen[s]
Out[B] = U - e kill[B] ∀B 6 =s

Topic 7: Global Dataflow Analysis – p. 7/15

CS 426 Topic 7: Global Dataflow Analysis

University of British Columbia

Iterative Algorithm for Available Expressions

1. Initialize:

Compute U, e gen[B], e kill[B], ∀B
in[B] = φ B = s

out[B] = e gen[B] B = s

out[B] = U - e kill[B] ∀B 6 =s

2. Iterate until Out[B] does not change:
do

change = false
for each block B do

In[B] =
⋂

p:p→B

Out[p]

oldout = Out[B]

Out[B] = Gen[B]
⋃

(In[B]−Kill[B])

if (oldout ! = Out[B]) change = true
end

while (change == true)

Topic 7: Global Dataflow Analysis – p. 8/15

CS 426 Topic 7: Global Dataflow Analysis

University of British Columbia

Efficient Orderings for Visiting Basic Blocks

Goal: Propagate information as far as possible in each iteration

Topic 7: Global Dataflow Analysis – p. 9/15

CS 426 Topic 7: Global Dataflow Analysis

University of British Columbia

Efficient Orderings for Visiting Basic Blocks

Goal: Propagate information as far as possible in each iteration

Postorder and Reverse Postorder

Depth-first spanning tree (DFST): tree constructed by Depth-first Search

DFST has 3 kinds of edges: tree edges, cross-edges, up-edges

Graph excluding up-edges is acyclic (DAG)

Postorder (on original graph) ≡ postorder traversal of resulting DAG

Properties of Reverse Postorder

If B1 → B2, then B1 is visited before B2, except for up-edges of DFST.

If CFG is reducible, up-edges are exactly the back edges!

In any case, max. # number of up-edges on any acyclic path is never more
than maximum loop nesting depth

Topic 7: Global Dataflow Analysis – p. 10/15

CS 426 Topic 7: Global Dataflow Analysis

University of British Columbia

Efficiency of the Algorithm

Rule-of-thumb: Typically 5 iterations or less!
(when dataflow information propagates only over acyclic paths)

Efficient dataflow ordering

Use Reverse Postorder (RPO) for “forward” dataflow problems

Use Postorder (PO) for “backward” dataflow problems

=⇒ Information propagates “as far as possible” in each iteration, until it reaches
a “retreating” DFS edge. It flows across the retreating DFS edge in the next
iteration.

Rule of thumb

Knuth [1971]: Max. #up-edges on each acyclic path is typically fewer than 3.

See Section 10.10 for more details.

Topic 7: Global Dataflow Analysis – p. 11/15

CS 426 Topic 7: Global Dataflow Analysis

University of British Columbia

Example 2: Live Variables

Live Variables May or Must?

Variable x is live at point p if x [may? must?] be used along some path
starting at p.

Dataflow variables

def [B] = {x ∈ V | x is assigned in B prior to use in B}

use[B] = {x ∈ V | x may be used in B prior to being assigned in B}

in[B] = {x ∈ V | x is live at entry to B}

out[B] = {x ∈ V | x is live at exit from B}

Dataflow equations

In[B] =

Out[B] =

Topic 7: Global Dataflow Analysis – p. 12/15

CS 426 Topic 7: Global Dataflow Analysis

University of British Columbia

Example 3: Reaching Definitions

Reaching Definitions May or Must?

Definition d reaches point p if there is a path from the point after d to p such
that d is not killed along that path.

REACH Dataflow Problem: Compute the set of all defs (of each variable v)
that [may? must?] reach the entry, exit of each basic block.

Dataflow variables (for each block B)

Gen(B) ≡ { d ∈ B | d is not subsequently‡ killed in B }.

Kill(B) ≡ { d | d is not killed (or subsequently killed) in B }.

In(B) ≡ the set of defs that reach Entry(B)

Out(B) ≡ the set of defs that reach Exit(B)

‡ On path from d to Exit(B), if d ∈ BDataflow equations

In[B] =

Out[B] =

Topic 7: Global Dataflow Analysis – p. 13/15

CS 426 Topic 7: Global Dataflow Analysis

University of British Columbia

The primitives of the dataflow problem

References for Dataflow Analysis:
1. Muchnick, Chapter 8

2. ALS&U

3. Flow Analysis of Computer Programs by Matthew Hecht, North Holland Publishers, 1977.

The Primitives

1. Dataflow variables: (So far) Sets of things, e.g., . . .

Available expressions: sets of expressions
Reaching definitions: sets of definitions
Live variables: sets of variables

⇒ What is an efficient representation for (large) sets, set operations?

2. “Confluence” or “meet” operator: E.g.,
⋃
,
⋂

:
In[B] =

⋃
p:p→B

Out[p], Out[B] =
⋃

s:B→s
In[s]

Topic 7: Global Dataflow Analysis – p. 14/15

CS 426 Topic 7: Global Dataflow Analysis

University of British Columbia

The primitives of the dataflow problem (cont’d)

3. Flow function (aka Transfer Function):

Out[B] = function of In[B] or
In[B] = function of Out[B]

. . . Example: Integer constant propagation
Set operations not enough: need arithmetic: x = x+ 2

4. Solve equations iteratively until convergence

keys to convergence: confluence operator and flow function
key to speed: depth-first evaluation; bit-vector operations

Generalizing . . .

Q. Is there a general class of problems that can be solved in a similar
framework?

Q. How could we formalize the properties of such a class?

Topic 7: Global Dataflow Analysis – p. 15/15

	Why Global Dataflow Analysis?
	Common Applications of Global Dataflow Analysis
	Dataflow Analysis Basics
	An Example Dataflow Problem: Available Expressions
	Exercise
	Dataflow Analysis for Available Expressions
	Iterative Algorithm for Available Expressions
	Efficient Orderings for Visiting Basic Blocks
	Efficient Orderings for Visiting Basic Blocks
	Efficiency of the Algorithm
	Example 2: Live Variables
	Example 3: Reaching Definitions
	The primitives of the dataflow problem
	The primitives of the dataflow problem (cont'd)

