CS 426 Topic 7: Global Dataflow Analysis

Why Global Dataflow Analysis?

Answer key questions at compile-time about the
flow of values and other program properties over control-flow paths

Compiler fundamentals

What defs. of x reach a given use of x (and vice-versa)?

What {<ptr,target>} pairs are possible at each statement?

Scalar dataflow optimizations

Are any uses reached by a particular definition of «?

Has an expression been computed on all incoming paths?
What is the innermost loop level at which a variable is defined?

Correctness and safety:

|s variable = defined on every path to a use of x?

Is a pointer to a local variable live on exit from a procedure?

Parallel program optimization, program understanding, ...

University of British Columbia
Topic 7: Global Dataflow Analvsis — p. 1/15

CS 426 Topic 7: Global Dataflow Analysis

Common Applications of Global Dataflow Analysis

Preliminary Analyses Redundancy Elimination
Fointer Analysis ® Local Common Subexpression
® Detecting uninitialized variables Elimination (CSE)
® Type inference ® Global Common Subexpression
® Strength Reduction for Induction Elimination (GCSE)

Variables ® | oop-invariant Code Motion
Static Computation Elimination (LICM)

® Partial Redundancy Elimination

® Dead Code Elimination (DCE) (PRE)

® Constant Propagation
Code Generation

® Copy Propagation
® Liveness analysis for register allo-
cation

University of British Columbia
Topic 7: Global Dataflow Analvsis — p. 2/15

CS 426 Topic 7: Global Dataflow Analysis

Dataflow Analysis Basics

Point: A location in a basic block just before or after some statement.

Entry(B): the point before first statement in B
Exit (B): the point after last statement in B

Path: A path from p; to p,, Is a sequence of points pq, po, ... p, Such that
(intuitively) some execution can visit these points in order.
[See book for formal definition]

Kill of a Definition: A definition d of variable V' is killed on a path if there is an
unambiguous definition of V' on that path.

Kill of an Expression: An expression ¢ Is killed on a path if there is a possible
definition of any of the variables of e on that path.

University of British Columbia
Topic 7: Global Dataflow Analvsis — p. 3/15

CS 426 Topic 7: Global Dataflow Analysis

An Example Dataflow Problem: Available Expressions

Definitions

Available expressions: x + y IS available at point p if:
(a) every path to p evaluates x + y

(b) between the last such evaluation and p on each path, neither = nor y
IS modified.

Kill: Block B kills = + y If it may assign to x or y, and it does not
subsequently recomputgnL Y

Generate: Block B generates x + y If it definitely evaluates x + y, and it does
not subsequently modify = or .

University of British Columbia
Topic 7: Global Dataflow Analvsis — p. 4/15

CS 426 Topic 7: Global Dataflow Analysis

Dataflow variables:

Let I/ = universal set of expressions in the program. Then:

m

out

e_gen

e kill|

B

SSCS e

{eel
{eeld
{eeld
{ecl

e IS avall at entry to B}
e IS avall at exit from B}
e IS generated by B}

e is killed by B}

University of British Columbia

Tobic 7: Global Dataflow Analvsis — p. 5/15

CS 426 Topic 7: Global Dataflow Analysis

Exercise

Find in, out, e;en and egill for each block:
int main(int argc, char*x argv) {

BO: int i, j, k, *pi = &, *q, **pp = π
| = (argc > 1)? atoi(argv[l1l]) : 10;
B4: j =1 =1 + 1;
kK =i +j;
q = &k;
it >1) |
B5: int tnp=j; j =1; 1 = tnp;
}
B6: pp = &q;
**pp = 0;
if (i > 0)
B7: printf("%, %, %\n", | ~ i, |J +1,] >1);
return O;
}

University of British Columbia
Tobic 7: Global Dataflow Analvsis — p. 6/15

CS 426 Topic 7: Global Dataflow Analysis

Dataflow Analysis for Available Expressions

Dataflow equations:

In[B] = () Outlp
p:p— B
Out|B] = e_gen|B] U (In|B] — e_kill|B])
Initial values:
In[s] = ¢
Qut[s] = e_gen|s]
Qut[B] = U - e_kill|B] VB £s

University of British Columbia
Tobic 7: Global Dataflow Analvsis — p. 7/15

CS 426 Topic 7: Global Dataflow Analysis

Iterative Algorithm for Available Expressions

1. Initialize:
Conmpute U, e_gen|B|, e killlB], VB
in[B] = ¢ B=s
out[B] = e_gen|B] B =s
out[B] = U - e kill|B] VB f£s

2. lterate until Out[B] does not change:
do
change = fal se
for each bl ock B do
In|B] = ﬂ Out|p]
p:p— B
oldout = Out|B]
Out[B] = Gen[B] | | (In[B] - Kill[B])
| f (oldout ! = Out|B]) change = true
end
whil e (change == true)

University of British Columbia
Topic 7: Global Dataflow Analvsis — p. 8/15

CS 426 Topic 7: Global Dataflow Analysis

Efficient Orderings for Visiting Basic Blocks

Goal: Propagate information as far as possible in each iteration

University of British Columbia
Tobic 7: Global Dataflow Analvsis — p. 9/15

CS 426 Topic 7: Global Dataflow Analysis

Efficient Orderings for Visiting Basic Blocks

Goal: Propagate information as far as possible in each iteration

Postorder and Reverse Postorder

® Depth-first spanning tree (DFST): tree constructed by Depth-first Search
® DFST has 3 kinds of edges: tree edges, cross-edges, up-edges

® Graph excluding up-edges is acyclic (DAG)

® Postorder (on original graph) = postorder traversal of resulting DAG

Properties of Reverse Postorder

® If By — B», then B is visited before B,, except for up-edges of DFST.

® If CFG is reducible, up-edges are exactly the back edges!

® |n any case, max. # number of up-edges on any acyclic path is never more
than maximum loop nesting depth

University of British Columbia
Tooic 7: Global Dataflow Analvsis — p. 10/15

CS 426 Topic 7: Global Dataflow Analysis

Efficiency of the Algorithm

Rule-of-thumb: Typically 5 iterations or less!
(when dataflow information propagates only over acyclic paths)

Efficient dataflow ordering

® Use Reverse Postorder (RPO) for “forward” dataflow problems
® Use Postorder (PO) for “backward” dataflow problems

— Information propagates “as far as possible” in each iteration, until it reaches
a “retreating” DFS edge. It flows across the retreating DFS edge in the next
iteration.

Rule of thumb

® Knuth [1971]: Max. #up-edges on each acyclic path is typically fewer than 3.

See Section 10.10 for more details.

University of British Columbia
Tooic 7: Global Dataflow Analvsis — p. 11/15

CS 426 Topic 7: Global Dataflow Analysis

Example 2: Live Variables

Live Variables

May or Must?

Variable x is live at point p if z [may? must?] be used along some path

starting at p.

Dataflow variables

de f|B]

use

out

Dataflow equations

B
B

In|B]
Out|B]|

{zx eV
{z eV
{reV
{reV

University of British Columbia

x IS assigned in B prior to use in B}

x may be used in B prior to being assigned in B}
x is live at entry to B}

x 1S live at exit from B}

Tooic 7: Global Dataflow Analvsis — p. 12/15

CS 426 Topic 7: Global Dataflow Analysis

Example 3: Reaching Definitions

Reaching Definitions May or Must?

® Definition d reaches point p if there is a path from the point after d to p such
that d is not killed along that path.

® REACH Dataflow Problem: Compute the set of all defs (of each variable v)
that [may? must?] reach the entry, exit of each basic block.

Dataflow variables (for each block B)

® Gen(B) ={d e B|dis notsubsequently?* killed in B }.

® Kill(B) ={d]|disnotkilled (or subsequently killed) in B }.
® | n(B) = the set of defs that reach Entry(B)

® (Qut (B) = the set of defs that reach Exit(B)

Dataflow equations 1 On path from d to Exit(B), if d € B

In|B] =
Out|B] =

University of British Columbia
Tooic 7: Global Dataflow Analvsis — p. 13/15

CS 426 Topic 7: Global Dataflow Analysis

The primitives of the dataflow problem

References for Dataflow Analysis:
1. Muchnick, Chapter 8

2. ALS&U

3. Flow Analysis of Computer Programs by Matthew Hecht, North Holland Publishers, 1977.

The Primitives

1. Dataflow variables: (So far) Sets of things, e.qg., ...

Available expressions:. sets of expressions
Reaching definitions: sets of definitions
Live variables: sets of variables

= What Is an efficient representation for (large) sets, set operations?
2. “Confluence” or “meet” operator: E.g., |,):

In[B] = J,.,_, g Out[p], Out[B] =,.5_,, In[s]

University of British Columbia

Tooic 7: Global Dataflow Analvsis — p. 14/15

CS 426 Topic 7: Global Dataflow Analysis

The primitives of the dataflow problem (cont'd)

3. Flow function (aka Transfer Function):

Out[B] = function of In[B] or
In[B] = function of Out[B]

... Example: Integer constant propagation
Set operations not enough: need arithmetic: x = = + 2

4. Solve equations iteratively until convergence
keys to convergence: confluence operator and flow function
key to speed:. depth-first evaluation; bit-vector operations

Generalizing ...

Q. Is there a general class of problems that can be solved in a similar
framework?

Q. How could we formalize the properties of such a class?

University of British Columbia
Tooic 7: Global Dataflow Analvsis — p. 15/15

	Why Global Dataflow Analysis?
	Common Applications of Global Dataflow Analysis
	Dataflow Analysis Basics
	An Example Dataflow Problem: Available Expressions
	Exercise
	Dataflow Analysis for Available Expressions
	Iterative Algorithm for Available Expressions
	Efficient Orderings for Visiting Basic Blocks
	Efficient Orderings for Visiting Basic Blocks
	Efficiency of the Algorithm
	Example 2: Live Variables
	Example 3: Reaching Definitions
	The primitives of the dataflow problem
	The primitives of the dataflow problem (cont'd)

