Introduction to PRE

Partial redundancy elimination

- discovers partially redundant expressions,
- converts to fully redundant, then eliminates redundancy

Tradeoffs with PRE

- data-flow properties are complex and non-intuitive, but ...
- + dominates classical GCSE and LICM, and does more;
- + it minimizes auxiliary variable lifetimes
- + algorithms give strong guarantees about optimality
- \Rightarrow every optimizing compiler should use it

References:

J. Knoop, O. Rüthing, and B. Steffen, "Lazy Code Motion," In *Proc. ACM Symposium on Programming Language Design and Implementation*, 1992.

- 1. Muchnick, Chapter 13.3 (based on Knoop et al., above).
- 2. Effective Partial Redundancy Elimination, Preston Briggs and Keith Cooper, *PLDI 1994* (improves how distinct expressions are identified to find more redundancies).

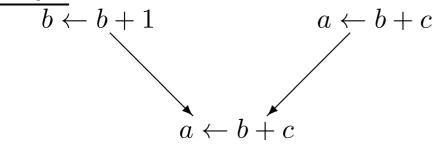
Additional Reading:

- 1. Original paper: E. Morel and C. Renvoise, "Global optimization by suppression of partial redundancies," CACM 22(2), Feburary, 1979.
- 2. Numerous Improvements, e.g.,
 - Dreschler and Stadel, TOPLAS 10(4), 1988.
 - Dhamdhere TOPLAS, 13 (2), 1991 (practical adaptation).

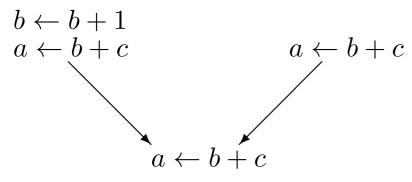
Partially redundant expressions

An expression is *partially redundant* at p if it is *available* on some, but not all, paths reaching p

Example



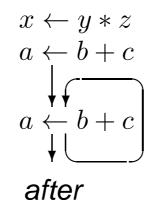
PRE inserts code to make b + c fully redundant



Loop invariant expressions

Another example

 $\begin{array}{c} x \leftarrow y * z \\ \downarrow \\ a \leftarrow b + c \\ \downarrow \\ \downarrow \\ \end{array}$



before

PRE removes loop invariants

- invariant expression is partially redundant
- PRE converts it to full redundancy
- PRE removes redundant expression

What can be moved?

- ideally, both computation and assignment
- of course, computation is easier

(or redundant)

How does it work?

- Use five distinct data-flow problems
- Computationally optimal placement: anticipatable, earliest
- Lifetime-optimal placement: latest (in 2 steps), isolated
- Insert the code and remove the redundant expressions

Scope

PRE works with *lexically identical* expressions:

- expressions
- Joads
- constants
- *not* stores, copies, or calls

Strategies to make PRE more effective

Problems

- Associativity, commutativity
- Algebraic identities
- Complex Expressions

Solution: Two pre-passes to make PRE more effective.

Effective Partial Redundancy Elimination, Preston Briggs and Keith Cooper, PLDI 1994.

Global Reassociation

Reorder expressions to expose constants and loop-invariant terms, and to normalize order

Global Value Numbering

- Use algorithm similar to AWZ to identify "equivalent" variables
- Do *not* perform the GVN optimization: placement may be poor!

Definition:

A *critical edge* in a flow graph is an edge from a node with multiple successors to a node with multiple predecessors.

So what's the problem?

Splitting critical edges

Split every edge leading to a node with more than one predecessor. Note: Not just critical edges \Rightarrow sufficient to insert computations at node entries only Assume each basic block is a single statement.

Informally ...

1. Anticipatable :

 \overline{e} is anticipatable at p if

aka "very busy," "down-safe"

 \Rightarrow Computing *e* at *p* would be useful along any path from *p*.

2. Earliest

 \overline{e} is *earliest* at p if there is some path from s to p on which e cannot be computed "anticipatably" and correctly

i.e., there is some path q from s to n on which e is not anticipatable on any point on q, i.e.,

- e would give a different value if computed at that point, or
- e would not be used on some path from that point

 $\Rightarrow p$ is an earliest point to compute e.

Overview of PRE Algorithm (cont'd)

A computationally optimal placement

Compute expression e at each point p such that e is both *anticipatable* and *earliest* at p.

This is optimal in the sense that it:

- eliminates redundant expressions on every path from s to exit, and
- never computes an expression on any path on which it was not computed before.

Problem

May compute expressions very early on some paths \Rightarrow significantly increases register pressure

Improved PRE Algorithm - Lazy Code Motion

Informally ...

3. Latest:

p is a *latest* point to compute e if placing e at p is computationally optimal *AND*, on every path from p, any later optimal point on the path would be after some use of e.

 \Rightarrow cannot move e later on any path from p

4. Isolated:

p is an *isolated* point to compute e if it is optimal, and that value of e is only used immediately after p.

 \Rightarrow unnecessary to allocate a new temporary at p

Improved PRE Algorithm - Lazy Code Motion (cont'd)

A lifetime-optimal placement

- Compute expression e at each point p such that e is latest at p and not isolated at p.
- ⇒ This is computationally optimal and requires the shortest lifetimes for all temporary variables introduced

Local properties of basic block b

<u>**Used</u></u> : e is used in b if its value is computed in b</u>**

<u>Killed</u> : e is killed in b if any of its operands may be modified in b

transp(b) :

 $e \in transp(b)$ if the operands of e are not modified in block b. (We say block b is *transparent* to e). ANTloc(b) :

 $e \in ANTloc(b)$ if e is computed at least once in b and its operands are not modified before its first computation.

(We say e is *locally anticipatable* in block b).

 \Rightarrow can move first evaluation to the start of b

Note that ANTloc(b) = Used(b) if b has a single statement.

Example :

 $a \leftarrow b + c$ $d \leftarrow a + e$

the following properties hold

transp = {U - {expressions using a or d} } ANTloc = {b+c} ANT(p) :

 $e \in \textit{ANT}(p)$ if e is used before being killed on every path from point p to the exit.

e is globally anticipatable at point p. (Also called *down-safe* at p.)

ANTin(b), ANTout(b) :

ANT(p) at entry and exit of block b

$$ANTout(b) = \begin{cases} \phi & \text{if } b \text{ is an exit block} \\ \bigcap_{j \in \text{succ}(b)} ANTin(j) & \text{otherwise} \end{cases}$$

$$ANTin(b) = ANTloc(b) \bigcup (ANTout(b) \bigcap transp(b))$$

EARLin(b) :

 $e \in EARLin(b)$ if there is some path q from s to ENTRY(b) where no node prior to b on q both evaluates e and produces the same value as e would produce at ENTRY(b).

We say e is *earliest* at ENTRY(b).

$$EARLin(b) = \begin{cases} \mathcal{U} & \text{if } b = s \\ \bigcup_{j \in \mathsf{pred}(b)} EARLout(j) & \text{otherwise} \end{cases}$$
$$EARLout(b) = \overline{transp(b)} \bigcup (EARLin(b) \bigcap \overline{ANTin(b)})$$

Theorem 3.9:

It is <u>computationally optimal</u> to compute e at entry to block b if $e \in ANTin(b) \cap EARLin(b)$

Used to compute Latest

DELAY(p) :

 $e \in DELAY(p)$ if, for every path from *s* to *p*, there is a Safe-Earliest computational point of *e* on the path (may be *p* itself), say p_{SE} , and there are no subsequent uses of *e* on that path (i.e., between p_{SE} and *p*)

Think: *e* should be *delayed* at least up to point *p*. *Note*: DELAY(p) preserves down-safety, and therefore preserves computational optimality!

Why?

Delayedness (cont'd)

DELAYin(b), DELAYout(b) :

DELAY(p) at entry and exit of *b* respectively.

$$\begin{aligned} \textit{DELAYin}(b) &= (\textit{ANTin}(b) \bigcap \textit{EARLin}(b)) \bigcup \\ & \left\{ \begin{array}{ll} \phi \\ \bigcap_{j \in \mathsf{pred}(b)} \textit{DELAYout}(j) & \textit{otherwise} \end{array} \right. \end{aligned}$$

$$DELAYout(b) = DELAYin(b) \bigcap \overline{ANTloc(b)}$$

University of British Columbia

LATEST(p) :

 $e \in LATEST(p)$ if p is a computationally optimal point for computing e and, for every path q from p to exit, any later optimal point on q occurs after a use of e on q.

Say: e is latest at point p

LATESTin(b) :

LATEST(p) at entry to block b.

$$LATESTin(b) = DELAYin(b) \bigcap_{\substack{(ANTloc(b) \bigcup j \in succ(b))}} DELAYin(j))$$

ISOLout(b) :

 $e \in ISOLout(b)$ if and only if, on every path from a successor block to exit, a use of e is preceded by an optimal computation point of e.

ISOLin(b) :

Similar, but think of *b* itself as being a successor block of the entry point of *b*.

$$ISOLout(b) = \begin{cases} \phi & \text{if } b \text{ is an exit block} \\ \bigcap_{j \in \text{succ}(b)} ISOLin(j) & \text{otherwise} \end{cases}$$

 $ISOLin(b) = LATESTin(b) \bigcup (ISOLout(b) \bigcap \overline{ANTloc(b)})$

Culmination

The lifetime-optimal points

$$OPT(b) = LATESTin(b) \bigcap \overline{ISOLout(b)}$$

The redundant expressions

$$REDN(b) = ANTloc(b) \bigcap LATESTin(b) \bigcap ISOLout(b)$$

The Transformation for an Expression e

- Introduce a new auxiliary variable, h, for e
- Solution Replace e with h in each block b such that $e \in REDN(b)$
- Insert h = e at entry of each node b such that $e \in OPT(b)$

Implementation of Lazy Code Motion

Dataflow Analyses

- Use bit vectors and the iterative algorithm
- Use actual basic blocks, not individual statements
- Again, number the expressions carefully
 - Use global reassociation and global value numbering
 - Textually identical expressions \rightarrow same number

Code generation

- Split critical edges and other edges to blocks with multiple successors
- May need to insert code at entry or interior of basic blocks
- Important: Check for zero-trip loops when moving computations out of loops