
CS 426 Topic 9: Partial Redundancy Elimination

University of British Columbia

Introduction to PRE

Partial redundancy elimination

discovers partially redundant expressions,

converts to fully redundant, then eliminates redundancy

Tradeoffs with PRE

− data-flow properties are complex and non-intuitive, but . . .

+ dominates classical GCSE and LICM, and does more;

+ it minimizes auxiliary variable lifetimes

+ algorithms give strong guarantees about optimality

⇒ every optimizing compiler should use it

Topic 9: Partial Redundancy Elimination – p. 1/??



CS 426 Topic 9: Partial Redundancy Elimination

University of British Columbia

Introduction to PRE (cont’d)

References:
J. Knoop, O. Rüthing, and B. Steffen, “Lazy Code Motion,” In Proc. ACM Symposium on
Programming Language Design and Implementation, 1992.

1. Muchnick, Chapter 13.3 (based on Knoop et al., above).

2. Effective Partial Redundancy Elimination, Preston Briggs and Keith Cooper, PLDI 1994 (improves
how distinct expressions are identified to find more redundancies).

Additional Reading:
1. Original paper: E. Morel and C. Renvoise, “Global optimization by suppression of partial

redundancies,” CACM 22(2), Feburary, 1979.

2. Numerous Improvements, e.g.,

Dreschler and Stadel, TOPLAS 10(4), 1988.

Dhamdhere TOPLAS, 13 (2), 1991 (practical adaptation).

Topic 9: Partial Redundancy Elimination – p. 2/??



CS 426 Topic 9: Partial Redundancy Elimination

University of British Columbia

Partially redundant expressions

An expression is partially redundant at p if it is available on some, but not all,
paths reaching p

Example
b← b+ 1 a← b+ c

a← b+ c

@
@
@R

�
�

�	

PRE inserts code to make b+ c fully redundant
b← b+ 1
a← b+ c a← b+ c

a← b+ c

@
@
@R

�
�

�	

Topic 9: Partial Redundancy Elimination – p. 3/??



CS 426 Topic 9: Partial Redundancy Elimination

University of British Columbia

Loop invariant expressions

Another example

x← y ∗ z

a← b+ c
?

?� �

��
?

before

x← y ∗ z

a← b+ c

a← b+ c
?

?� �

��
?

after
PRE removes loop invariants

invariant expression is partially redundant (or redundant)

PRE converts it to full redundancy

PRE removes redundant expression

What can be moved?

ideally, both computation and assignment

of course, computation is easier

Topic 9: Partial Redundancy Elimination – p. 4/??



CS 426 Topic 9: Partial Redundancy Elimination

University of British Columbia

High-level view

How does it work?

Use five distinct data-flow problems

Computationally optimal placement: anticipatable, earliest

Lifetime-optimal placement: latest (in 2 steps), isolated

Insert the code and remove the redundant expressions

Scope
PRE works with lexically identical expressions:

expressions

loads

constants

not stores, copies, or calls

Topic 9: Partial Redundancy Elimination – p. 5/??



CS 426 Topic 9: Partial Redundancy Elimination

University of British Columbia

Strategies to make PRE more effective

Problems

Associativity, commutativity

Algebraic identities

Complex Expressions

Solution: Two pre-passes to make PRE more effective.
Effective Partial Redundancy Elimination, Preston

Briggs and Keith Cooper, PLDI 1994.

Global Reassociation

Reorder expressions to expose constants and loop-invariant terms, and to
normalize order

Global Value Numbering

Use algorithm similar to AWZ to identify “equivalent” variables

Do not perform the GVN optimization: placement may be poor!

Topic 9: Partial Redundancy Elimination – p. 6/??



CS 426 Topic 9: Partial Redundancy Elimination

University of British Columbia

Problem: Critical Edges

Definition:

A critical edge in a flow graph is an edge from a node with multiple
successors to a node with multiple predecessors.

So what’s the problem?

Splitting critical edges

Split every edge leading to a node with more than one predecessor.
Note: Not just critical edges
⇒ sufficient to insert computations at node entries only

Topic 9: Partial Redundancy Elimination – p. 7/??



CS 426 Topic 9: Partial Redundancy Elimination

University of British Columbia

Overview of PRE Algorithm

Assume each basic block is a single statement.

Informally . . .

1. Anticipatable : aka “very busy,” “down-safe”
e is anticipatable at p if
⇒ Computing e at p would be useful along any path from p.

2. Earliest :
e is earliest at p if there is some path from s to p on which e cannot be
computed “anticipatably” and correctly
i.e., there is some path q from s to n on which e is not anticipatable on any
point on q, i.e.,

e would give a different value if computed at that point, or
e would not be used on some path from that point

⇒ p is an earliest point to compute e.

Topic 9: Partial Redundancy Elimination – p. 8/??



CS 426 Topic 9: Partial Redundancy Elimination

University of British Columbia

Overview of PRE Algorithm (cont’d)

A computationally optimal placement

Compute expression e at each point p such that e is both anticipatable and
earliest at p.
This is optimal in the sense that it:

eliminates redundant expressions on every path from s to exit, and
never computes an expression on any path on which it was not
computed before.

Problem

May compute expressions very early on some paths
⇒ significantly increases register pressure

Topic 9: Partial Redundancy Elimination – p. 9/??



CS 426 Topic 9: Partial Redundancy Elimination

University of British Columbia

Improved PRE Algorithm - Lazy Code Motion

Informally . . .

3. Latest:
p is a latest point to compute e if placing e at p is computationally optimal
AND, on every path from p, any later optimal point on the path would be
after some use of e.
⇒ cannot move e later on any path from p

4. Isolated:
p is an isolated point to compute e if it is optimal, and that value of e is only
used immediately after p.
⇒ unnecessary to allocate a new temporary at p

Topic 9: Partial Redundancy Elimination – p. 10/??



CS 426 Topic 9: Partial Redundancy Elimination

University of British Columbia

Improved PRE Algorithm - Lazy Code Motion (cont’d)

A lifetime-optimal placement

Compute expression e at each point p such that e is latest at p and not
isolated at p.

⇒ This is computationally optimal and requires the shortest lifetimes for all
temporary variables introduced

Topic 9: Partial Redundancy Elimination – p. 11/??



CS 426 Topic 9: Partial Redundancy Elimination

University of British Columbia

Preliminaries

Local properties of basic block b

Used : e is used in b if its value is computed in b

Killed : e is killed in b if any of its operands may be modified in b

transp(b) :
e ∈ transp(b) if the operands of e are not modified in block b.
(We say block b is transparent to e).

Topic 9: Partial Redundancy Elimination – p. 12/??



CS 426 Topic 9: Partial Redundancy Elimination

University of British Columbia

Preliminaries (cont’d)

ANTloc(b) :
e ∈ ANTloc(b) if e is computed at least once in b and its operands are not
modified before its first computation.
(We say e is locally anticipatable in block b).
⇒ can move first evaluation to the start of b

Note that ANTloc(b) = Used(b) if b has a single statement.
Example :

a ← b + c

d ← a + e

the following properties hold

transp = {U − {expressions using a or d} }
ANTloc = {b+c}

Topic 9: Partial Redundancy Elimination – p. 13/??



CS 426 Topic 9: Partial Redundancy Elimination

University of British Columbia

Anticipatable

ANT(p) :
e ∈ ANT (p) if e is used before being killed on every path from point p to the
exit.
e is globally anticipatable at point p.
(Also called down-safe at p.)

ANTin(b), ANTout(b) :
ANT (p) at entry and exit of block b

ANTout(b) =







φ if b is an exit block
⋂

j∈succ(b)

ANTin(j) otherwise

ANTin(b) = ANTloc(b)
⋃

(ANTout(b)
⋂

transp(b))

Topic 9: Partial Redundancy Elimination – p. 14/??



CS 426 Topic 9: Partial Redundancy Elimination

University of British Columbia

Earliestness

EARLin(b) :
e ∈ EARLin(b) if there is some path q from s to ENTRY(b) where no node
prior to b on q both evaluates e and produces the same value as e would
produce at ENTRY(b).
We say e is earliest at ENTRY(b).

EARLin(b) =







U if b = s
⋃

j∈pred(b)

EARLout(j) otherwise

EARLout(b) = transp(b)
⋃

(EARLin(b)
⋂

ANTin(b))

Theorem 3.9:

It is computationally optimal to compute e at entry to block b if
e ∈ ANTin(b)

⋂

EARLin(b)

Topic 9: Partial Redundancy Elimination – p. 15/??



CS 426 Topic 9: Partial Redundancy Elimination

University of British Columbia

Delayedness

Used to compute Latest

DELAY(p) :
e ∈ DELAY (p) if, for every path from s to p, there is a Safe-Earliest
computational point of e on the path (may be p itself), say pSE, and there are
no subsequent uses of e on that path (i.e., between pSE and p)

Think: e should be delayed at least up to point p.
Note: DELAY(p) preserves down-safety, and therefore preserves
computational optimality! Why?

Topic 9: Partial Redundancy Elimination – p. 16/??



CS 426 Topic 9: Partial Redundancy Elimination

University of British Columbia

Delayedness (cont’d)

DELAYin(b), DELAYout(b) :

DELAY (p) at entry and exit of b respectively.

DELAYin(b) = (ANTin(b)
⋂

EARLin(b))
⋃







φ if b = s
⋂

j∈pred(b)

DELAYout(j) otherwise

DELAYout(b) = DELAYin(b)
⋂

ANTloc(b)

Topic 9: Partial Redundancy Elimination – p. 17/??



CS 426 Topic 9: Partial Redundancy Elimination

University of British Columbia

Latestness

LATEST(p) :
e ∈ LATEST (p) if p is a computationally optimal point for computing e and,
for every path q from p to exit, any later optimal point on q occurs after a
use of e on q.
Say: e is latest at point p

LATESTin(b) :

LATEST (p) at entry to block b.

LATESTin(b) = DELAYin(b)
⋂

(ANTloc(b)
⋃ ⋂

j∈succ(b)

DELAYin(j))

Topic 9: Partial Redundancy Elimination – p. 18/??



CS 426 Topic 9: Partial Redundancy Elimination

University of British Columbia

Isolatedness

ISOLout(b) :
e ∈ ISOLout(b) if and only if, on every path from a successor block to exit,
a use of e is preceded by an optimal computation point of e.

ISOLin(b) :

Similar, but think of b itself as being a successor block of the entry point of b.

ISOLout(b) =







φ if b is an exit block
⋂

j∈succ(b)

ISOLin(j) otherwise

ISOLin(b) = LATESTin(b)
⋃

(ISOLout(b)
⋂

ANTloc(b))

Topic 9: Partial Redundancy Elimination – p. 19/??



CS 426 Topic 9: Partial Redundancy Elimination

University of British Columbia

Culmination

The lifetime-optimal points

OPT (b) = LATESTin(b)
⋂

ISOLout(b)

The redundant expressions

REDN(b) = ANTloc(b)
⋂

LATESTin(b)
⋂

ISOLout(b)

The Transformation for an Expression e

Introduce a new auxiliary variable, h, for e

Replace e with h in each block b such that e ∈ REDN(b)

Insert h = e at entry of each node b such that e ∈ OPT (b)

Topic 9: Partial Redundancy Elimination – p. 20/??



CS 426 Topic 9: Partial Redundancy Elimination

University of British Columbia

Implementation of Lazy Code Motion

Dataflow Analyses

Use bit vectors and the iterative algorithm

Use actual basic blocks, not individual statements

Again, number the expressions carefully
Use global reassociation and global value numbering
Textually identical expressions→ same number

Code generation

Split critical edges and other edges to blocks with multiple successors

May need to insert code at entry or interior of basic blocks

Important : Check for zero-trip loops when moving computations out of loops

Topic 9: Partial Redundancy Elimination – p. 21/??


	Introduction to PRE
	Introduction to PRE (cont'd)
	Partially redundant expressions
	Loop invariant expressions
	High-level view
	Strategies to make PRE more effective
	Problem: Critical Edges
	Overview of PRE Algorithm
	Overview of PRE Algorithm (cont'd)
	Improved PRE Algorithm - Lazy Code Motion
	Improved PRE Algorithm - Lazy Code Motion (cont'd)
	Preliminaries
	Preliminaries (cont'd)
	Anticipatable
	Earliestness
	Delayedness
	Delayedness (cont'd)
	Latestness
	Isolatedness
	Culmination
	Implementation of Lazy Code Motion

