
CS 426 Topic 10: Data Dependences and Dependence Testing

University of British Columbia (UBC)

Data Dependence

Data Dependence: There is data dependence from statement S1 to statement S2 if

1. there is a feasible execution path from S1 to S2,
2. an instance of S1 references the same memory location as an instance

of S2 in some execution of the program, and
3. at least one of the references is a store.

Dependence Graph: A dependence graph is a graph with:

one node per statement, and
a directed edge from S1 to S2 if there is a data dependence between S1

and S2 (where the instance of S2 follows the instance of S1 in the
relevant execution).

Topic 10: Data Dependences and Dependence Testing – p. 1/25

CS 426 Topic 10: Data Dependences and Dependence Testing

University of British Columbia (UBC)

Data Dependence (cont’d)

Example

S1: X = a + b S1−→S2

S2: Y = X + c

Why is this Important?

Fundamental analysis step for many transformations

⇐ Any time you need to reorder two statements

Examples?

Topic 10: Data Dependences and Dependence Testing – p. 2/25

CS 426 Topic 10: Data Dependences and Dependence Testing

University of British Columbia (UBC)

Legality of Transformations

Reordering Transformation: A reordering transformation is one that merely
changes the order of execution of computations in a program, without
adding or deleting executions of any computations.

Preserving Dependence: A reordering transformation preserves a dependence if
it preserves the relative execution order of the source and sink statements
of the dependence.

Topic 10: Data Dependences and Dependence Testing – p. 3/25

CS 426 Topic 10: Data Dependences and Dependence Testing

University of British Columbia (UBC)

Legality of Transformations (cont’d)

Theorem:

A reordering transformation that preserves all dependences in a program is
a legal transformation.

Note 1: Legal ⇒ preserves the meaning of that program,
i.e., all externally visible outputs are identical to the original program, and in
identical order except for exception conditions, and no new exceptions are
introduced.

Note 2: If there are conditional statements, the theorem must include
control dependences as well as data dependences. Later

Topic 10: Data Dependences and Dependence Testing – p. 4/25

CS 426 Topic 10: Data Dependences and Dependence Testing

University of British Columbia (UBC)

Classes of Data Dependence

Assume a sequential program

Flow Dependence (or True Dependence)

S1: X = a + b S1−→S2

S2: Y = X + c

Anti-Dependence

S1: Y = X + b S1−→| S2

S2: X = a + c

Topic 10: Data Dependences and Dependence Testing – p. 5/25

CS 426 Topic 10: Data Dependences and Dependence Testing

University of British Columbia (UBC)

Classes of Data Dependence (cont’d)

Output Dependence

S1: X = a + b S1−→◦ S2

S2: X = c + d

“Input Dependence”

S1: Y = X + b S1−→× S2

S2: Z = X + c

Implications for code transformation

Q. Which dependence types make it illegal to reorder S1 and S2?

Q. Illegal ⇒ Impossible?

Topic 10: Data Dependences and Dependence Testing – p. 6/25

CS 426 Topic 10: Data Dependences and Dependence Testing

University of British Columbia (UBC)

Dependences in Loops

do i = 1 to N

S1: X(i+1) = a(i) + b(i)

S2: Y(i) = X(i) + 1

enddo

do i = 1 to N

S1: X(i) = a(i) + b(i)

S2: Y(i) = X(i+1) + 1

enddo

do i = 1 to N

S1: t = a(i) + b(i)

S2: Y(i) = t + 1

enddo

Note: The dependence graph is a summary of the
“unrolled graph”.
Consider first loop above with X(i+1)
replaced by X(i)
⇒ Some information is lost in the summary.

Topic 10: Data Dependences and Dependence Testing – p. 7/25

CS 426 Topic 10: Data Dependences and Dependence Testing

University of British Columbia (UBC)

Dependences in Loop Nests

Goal: Supporting transformations of a given loop nest
Assume perfect loop nest here

Canonical Loop Nest
A loop nest is said to be in canonical form if both lower bound and step of each
loop is +1.

do i1 = 1 to n1

do i2 = 1 to n2

. . .

do ik = 1 to nk

statements

enddo

. . .

enddo

enddo

Note: nj may vary with i1 . . . i(j − 1)

Rectangular Loop Nest

A loop nest is rectangular if the value of
nj, ∀j, is constant throughout the execution of
the loop nest.

Topic 10: Data Dependences and Dependence Testing – p. 8/25

CS 426 Topic 10: Data Dependences and Dependence Testing

University of British Columbia (UBC)

Dependences in Loop Nests (cont’d)

Iteration space
The iteration space of the above loop nest is a set of points in a k-dimensional
integer space (i.e., a polyhedron):

L = {[i1, . . . , in] : 1 ≤ i1 ≤ n1 ∧ . . . ∧ 1 ≤ ik ≤ nk}

Lexicographic Order

Let ~I1 = [i11, i21, . . . , ik1],
and ~I2 = [i12, i22, . . . , ik2]; ~I1, ~I2 ∈ L.
~I1 ≺ ~I2 if and only if ∃j, 1 ≤ j ≤ k, such that:

i11 = i12, . . . , i(j − 1)1 = i(j − 1)2, and ij1 < ij2.

Note: Iteration ~I1 precedes iteration ~I2 iff ~I1 ≺ ~I2.

Topic 10: Data Dependences and Dependence Testing – p. 9/25

CS 426 Topic 10: Data Dependences and Dependence Testing

University of British Columbia (UBC)

Definitions of Dependences in Loop Nests (cont’d)

do i1 = 1 to n1 * Let ~I = (i1, . . ., ik)

do i2 = 1 to n2

. . .

do ik = 1 to nk

S1: X(f1(~I), . . . , fr(~I)) = . . .

S2: . . . = X(g1(~I), . . . , gr(~I))

enddo

. . .

enddo

enddo
S1 and S2 may be the same statement

or, S1 may occur after S2 in the loop

Topic 10: Data Dependences and Dependence Testing – p. 10/25

CS 426 Topic 10: Data Dependences and Dependence Testing

University of British Columbia (UBC)

Definitions of Dependences in Loop Nests (cont’d)

Flow dependence

We say that S1−→S2 iff ∃ ~I1, ~I2 ∈ L, such that

there is a feasible path from instance ~I1 of S1 to
instance ~I2 of S2, and

fs(~I1) = gs(~I2), ∀ 1 ≤ s ≤ r

Anti-dependence

We say that S2−→| S1 iff ∃ ~I1, ~I2 ∈ L, such that

there is a feasible path from instance ~I2 of S2 to
instance ~I1 of S1, and

fs(~I1) = gs(~I2), ∀1 ≤ s ≤ r

Topic 10: Data Dependences and Dependence Testing – p. 11/25

CS 426 Topic 10: Data Dependences and Dependence Testing

University of British Columbia (UBC)

Improving the Dependence Graphs for Loops

Distance vector : A dependence between statements S1 and S2 enclosed in k

common loops has distance vector ~d = [d1, . . . , dk] if the iteration with index
vector ~I + ~d = [i1 + d1, . . . , ik + dk] depends on iteration with index vector ~I.
Note: Computing distance vectors is harder than testing dependence

Direction vector : A vector ~δ = [δ1, . . . , δk], where

δs =

′ =′ if ds = 0,
′ <′ if ds > 0,
′ >′ if ds < 0,
′∗′ if ds < 0 and ds > 0 and ds = 0.

Topic 10: Data Dependences and Dependence Testing – p. 12/25

CS 426 Topic 10: Data Dependences and Dependence Testing

University of British Columbia (UBC)

Legal Direction Vectors

Legal Direction Vectors for Dependences

Note: Consider two iteration vectors ~I1 and ~I2 and the direction vector between
them, δ~I1, ~I2 . ~I1 ≺ ~I2 if and only if the leftmost non-’=’ entry in δ~I1, ~I2 is ’<’.

In the direction vector for any dependence, the leftmost non-’=’ entry must be
’<’ (if any non-’=’ entry is present).
Equivalently: the distance vector ~d ≥ ~0.

Topic 10: Data Dependences and Dependence Testing – p. 13/25

CS 426 Topic 10: Data Dependences and Dependence Testing

University of British Columbia (UBC)

Loop-Carried and Loop-Independent Dependences

Loop-Carried Dependence : A dependence is a loop-carried dependence iff its

dependence distance vector ~d > ~0.
Equivalently: the leftmost non-’=’ entry in the dependence distance vector
must be ’<’.

Loop-Independent Dependence : A dependence is a loop-independent dependence

iff its dependence distance vector ~d = ~0.
Equivalently: all distance vector entries must be ’=’.

Dependence level : The level of a loop-carried dependence is the position of the
leftmost non-’=’ entry of its direction vector.
The level of a loop-independent dependence is ∞.

Topic 10: Data Dependences and Dependence Testing – p. 14/25

CS 426 Topic 10: Data Dependences and Dependence Testing

University of British Columbia (UBC)

Loop-Carried and Loop-Independent Dependences (cont’d)

Theorem: Any transformation that does not change the order of loops, and does
not reorder the iterations of the level-k loop preserves all level-k
dependences in that loop.

Theorem: Any transformation that reorders the iterations of the level-k loop and
makes no other changes is legal if the loop carries no dependences.

Topic 10: Data Dependences and Dependence Testing – p. 15/25

CS 426 Topic 10: Data Dependences and Dependence Testing

University of British Columbia (UBC)

Dependence Testing

Dependence testing requires finding a solution to {fs(~I1) = gs(~I2), ∀1 ≤ s ≤ r}

under the inequality constraints ~I1, ~I2 ∈ L.

Complexity

Undecidable in general
Subscripted subscripts or indirection arrays: X(index(i, j))

Large class of so-called “irregular” applications
Scientific equivalent of arrays of pointers
Index array is computed at runtime
⇒ impossible to test without application-specific knowledge

Non-linear subscript expressions are extremely hard, and rare

Topic 10: Data Dependences and Dependence Testing – p. 16/25

CS 426 Topic 10: Data Dependences and Dependence Testing

University of British Columbia (UBC)

Dependence Testing (cont’d)

Assume linear subscript expressions, e.g.,

a0 + a1i1 + . . . amim,

where i1 . . . im are loop index variables.
Instance of integer programming
⇒ NP-complete in general

Topic 10: Data Dependences and Dependence Testing – p. 17/25

CS 426 Topic 10: Data Dependences and Dependence Testing

University of British Columbia (UBC)

Practical dependence testing

Simplifications

Two major simplifications in practice:
1. Subscript expressions are usually simple

most often: i1 or a1i1 + a0

2. Be conservative ⇒ Check if a dependence may exist.

ZIV, SIV, MIV A subscript expression containing zero, one, or more than one index
variable respectively
E.g., A[n], A[2 * i1 + n], A[2 * i1 + 3 * i2 + 5]

Separable Subscripts : A subscript position is said to be separable if the index
variables used in that subscript position are not used in any other subscript
position.

E.g., A[i+1, i, k] and A[i, j, k]

Coupled Subscripts : Two subscript positions are said to be coupled if the same
index variable is used in both positions.

Topic 10: Data Dependences and Dependence Testing – p. 18/25

CS 426 Topic 10: Data Dependences and Dependence Testing

University of British Columbia (UBC)

Partitioning the Problem

Simplify the problem by identifying common special cases:

1. Separate subscript positions into coupled groups

2. Label each subscript as ZIV, SIV, or MIV

3. For each separable subscript, apply appropriate test (ZIV, SIV, or MIV).
Yields direction vectors.

4. For each coupled group, apply a coupled subscript test
e.g., GCD test (does not give direction vectors), Delta test

5. If no test yields independence, a dependence exists:
Concatenate direction vectors from different groups

Topic 10: Data Dependences and Dependence Testing – p. 19/25

CS 426 Topic 10: Data Dependences and Dependence Testing

University of British Columbia (UBC)

GCD Test: A Simple Conservative Test

Simplifications

1. ignore loop bounds!

2. only test if a solution is possible (GCD property)

3. test each subscript position separately

GCD Property for Single Variable

Let f(i) = a1i+ a0, g(i) = b1i+ b0
f(i1) = g(i2) ⇒ a1i1 + a0 = b1i2 + b0.
GCD Property: If there is a solution to this equation, then

g = gcd(a1, b1) divides a0 − b0.

Proof: Let a1 = n1g, b1 = m1g. Then g × (n1i1 −m1i2) = a0 − b0, and the
term in parenthesis must be an integer.

Topic 10: Data Dependences and Dependence Testing – p. 20/25

CS 426 Topic 10: Data Dependences and Dependence Testing

University of British Columbia (UBC)

GCD Property for Multiple Variables (cont’d)

Let f(~I) = akik + . . . + a0, g(~I) = bkik + . . . + b0.
GCD Property: If there is a solution to the equation
akik1 + . . . + a0 = bkik2 + . . . + b0, then

g = gcd(a1, . . . , ak, b1, . . . , bk) divides (a0 − b0).

Topic 10: Data Dependences and Dependence Testing – p. 21/25

CS 426 Topic 10: Data Dependences and Dependence Testing

University of British Columbia (UBC)

Exact Solutions for SIV

Assumes: nj , a, b1, b2 are known
Strong SIV
A pair of subscripts with index variable ij are said to be Strong SIV if the
subscript expressions are the form aij + b1 and aij + b2.
Dependence exists iff either of these hold:

1. a = 0 and b1 = b2, or

2. | dj |≤ nj − 1, where dj =
(b1−b2)

a

Topic 10: Data Dependences and Dependence Testing – p. 22/25

CS 426 Topic 10: Data Dependences and Dependence Testing

University of British Columbia (UBC)

Exact Solutions for SIV (cont’d)

Weak SIV
The set of subscripts with index variable ij are Weak SIV if the subscripts are of
the form a1ij + b1 and a2ij + b2.
Each such subscript position j gives an equation of the form:

a1y = a2x+ b2 − b1

Approach for each index variable ij :

1. Solve up to r simultaneous equations in 2 unknowns.

2. Check if solutions satisfy 2 inequalities (one loop!)

Topic 10: Data Dependences and Dependence Testing – p. 23/25

CS 426 Topic 10: Data Dependences and Dependence Testing

University of British Columbia (UBC)

Exact Solution for Separable Weak SIV

The problem

a1i1 + a0 = b1i2 + b0

An extended GCD property

For any pair of values (x, y), the Euclidian GCD algorithm can also compute a
triplet (g, nx, ny) such that

g = nxx+ nyy = gcd(x, y)

Topic 10: Data Dependences and Dependence Testing – p. 24/25

CS 426 Topic 10: Data Dependences and Dependence Testing

University of British Columbia (UBC)

Exact Solution for Separable Weak SIV (cont’d)

Theorem

Let (g, na, nb) be such a triplet for pair (a1,−b1). Let xk and yk be given by:

xk = na

(

b0 − a0

g

)

+ k
b1

g

yk = nb

(

b0 − a0

g

)

+ k
a1

g

Then (xk, yk) is a solution of a1i1 + a0 = b1i2 + b0 for an integral value of k.
Furthermore, for any solution (x,y) there is a k such that x = xk and y = yk.
Strategy

1. Compute x0, y0 using the above equations

2. Then find all values of k for which x0 + k b1
g

falls within loop bounds, and
similarly for yk.

Topic 10: Data Dependences and Dependence Testing – p. 25/25

	Data Dependence
	Data Dependence (cont'd)
	Legality of Transformations
	Legality of Transformations (cont'd)
	Classes of Data Dependence
	Classes of Data Dependence (cont'd)
	Dependences in Loops
	Dependences in Loop Nests
	Dependences in Loop Nests (cont'd)
	Definitions of Dependences in Loop Nests (cont'd)
	Definitions of Dependences in Loop Nests (cont'd)
	Improving the Dependence Graphs for Loops
	Legal Direction Vectors
	Loop-Carried and Loop-Independent Dependences
	Loop-Carried and Loop-Independent Dependences (cont'd)
	Dependence Testing
	Dependence Testing (cont'd)
	Practical dependence testing
	Partitioning the Problem
	GCD Test: A Simple Conservative Test
	GCD Property for Multiple Variables (cont'd)
	Exact Solutions for SIV
	Exact Solutions for SIV (cont'd)
	Exact Solution for Separable Weak SIV
	Exact Solution for Separable Weak SIV (cont'd)

