
CS 426 Topic 11: Dependence-Based Transformations

University of British Columbia (UBC)

A Catalog of Transformations

Name Purpose Benefit

Preprocessing transformations

Loop normalization Make loops canonical Simplify,improve dep. analysis

Ind. var. substitution Identify aux. induction vars Improve dependence information

Scalar expansion Replace scalar with array Eliminate spurious dependences

Scalar/array privatization Treat var. as iteration-private Eliminate spurious dependences

Variable renaming Use multiple copies of vars Eliminate anti- and output-dependences

Reduction recognition Recognize reductions Ignore special-case dependences

Reordering transformations

Loop interchange Change loop nesting order Cache, parallelism, vectorization

Loop strip-mining Make 2 nested loops ”

Loop skewing Change wavefront loop to parallel Improve loop parallelism

Loop reversal Run loop backwards Reduce array storage

Index set splitting Break loop by index space Remove some deps.

Loop distribution Break loop by statements Simplify parallelization, vectorization

Loop alignment Change carried to indep. Simplify parallelization, vectorization

Loop fusion Join loops by statements Improve cache reuse

Topic 11: Dependence-Based Transformations – p. 1/24



CS 426 Topic 11: Dependence-Based Transformations

University of British Columbia (UBC)

Optimizations Using the Loop Transformations

Memory hierarchy optimizations

Transformations?
Goal 1: Improving reuse of data values within loop nest
Goal 2: Exploit reuse to reduce cache, TLB misses

Tiling

Transformations?
Goal 1: Exploit temporal reuse when data size > cache size
Goal 2: In parallel loops, reduce synch’n, comm’n overhead

Software Prefetching

Transformations?
Goal : Prefetch predictable accessesk iterations ahead

Topic 11: Dependence-Based Transformations – p. 2/24



CS 426 Topic 11: Dependence-Based Transformations

University of British Columbia (UBC)

Optimizations Using the Loop Transformations (cont’d)

Software Pipelining

Transformations?
Goal : Extract ILP from multiple consecutive iterations

Automatic parallelization Also, auto-vectorization

Transformations?
Goal 1: Enhance parallelism
Goal 2: Convert scalar loop to explicitly parallel
Goal 3: Improve performance of parallel code

Topic 11: Dependence-Based Transformations – p. 3/24



CS 426 Topic 11: Dependence-Based Transformations

University of British Columbia (UBC)

Loop Interchange

Informal Definition
Change nesting order of loops in a perfect loop nest, with no other changes.
Examples

do i=2, N

do j=2, M-1

A[i,j] = A[i,j] * 2

enddo

enddo

do j=2, M-1

do i=2, N

A[i,j] = A[i,j] * 2

enddo

enddo

do i=2, N

do j=2, M-1

A[i,j] = ... * B[i-1,j-1]

B[i,j] = ... + A[i,j] + A[i-1,j]

enddo

enddo

do j=2, M-1

do i=2, N

A[i,j] = ...

B[i,j] = ...

enddo

enddo

Topic 11: Dependence-Based Transformations – p. 4/24



CS 426 Topic 11: Dependence-Based Transformations

University of British Columbia (UBC)

Loop Interchange

Uses

1. Move independent loop innermost

2. Move independent loop outermost

3. Make accesses stride-1 in memory

4. Loop tiling (combine with strip-mining)

5. Unroll-and-jam (combine with unrolling)

6. Many others

Direction Vectors and Loop Interchange

If δ is a direction vector of a particular dependence S1 → S2 in a loop nest and
the order of loops in the loop nest is permuted, then the same permutation can
be applied to δ to obtain the new direction vector for the conflicting instances of
S1 and S2.

Topic 11: Dependence-Based Transformations – p. 5/24



CS 426 Topic 11: Dependence-Based Transformations

University of British Columbia (UBC)

Legality of Loop Interchange

Direction Matrix
A matrix where each row is the direction vector of a single dependence, i.e.,

each row ↔ a dependence

each column ↔ a loop

Legality of Loop Permutation

1. Construct direction matrix

2. Apply the given permutation to the columns of the matrix

3. The permutation is legal iff ???

Topic 11: Dependence-Based Transformations – p. 6/24



CS 426 Topic 11: Dependence-Based Transformations

University of British Columbia (UBC)

Examples

Legal Case

do i=2, N
do j=2, M-1

A[i,j] = ... * B[i-1,j-1]
B[i,j] = ... + A[i,j] + A[i-1,j]

enddo
enddo







= =

< =

< <







Ilegal Case

do i=2, N
do j=2, M-1

A[i,j] = ... * B[i-1,j-1]
B[i,j] = ... + A[i,j] + A[i-1,j+1]

enddo
enddo







= =

< >

< <







Topic 11: Dependence-Based Transformations – p. 7/24



CS 426 Topic 11: Dependence-Based Transformations

University of British Columbia (UBC)

Profitability of Loop Interchange

Profitability

Profitability is machine-dependent:
1. vector machines
2. parallel machines
3. caches with single outstanding loads
4. caches with multiple outstanding loads

Applying loop interchange

1. Single ’<’ entry: a “serial loop”
Move loop outermost for vectorization
Move loop innermost for parallelization

2. Multiple ’<’ entries: Outermost one carries dependence
Loop carrying the dependence changes after permutation!
May still benefit by moving carried-dependences to outermost loop

Topic 11: Dependence-Based Transformations – p. 8/24



CS 426 Topic 11: Dependence-Based Transformations

University of British Columbia (UBC)

Loop Reversal

Informal Definition

Reverse the order of execution of the iterations of a loop

Example

Scalarize the following Fortran90 statement:

A[2:64] = A[1:63] * e

! Reverse the loop to do this efficiently:

do i = 64, 2, -1

A[i] = A[i-1] * e

enddo

Uses

Scalarize a vector statement (e.g., in Fortran 90) by ensuring that values
are read before being written.

Convert a ’>’ to a ’<’ in a direction vector to enable other transformations,
e.g., loop interchange.

Topic 11: Dependence-Based Transformations – p. 9/24



CS 426 Topic 11: Dependence-Based Transformations

University of British Columbia (UBC)

Loop Skewing

Always safe.Informal Definition

Increase dependence distance by n by substituting loop index j with
jj = j + n ∗ i. E.g., For n = 1, we use jj = j + i.

Example
do i=2,N

do j=2,N

A[i,j] = A[i-1,j] + A[i,j-1]

enddo

enddo

do i=2,N

do jj=i+2,i+N

A[i,jj-i] = A[i-1,jj-i] + A[i,jj-i-1]

enddo

enddo

Uses

Improve parallelism by converting ’=’ to ’<’ in a direction vector

Improve vectorization in a similar way

(Rarely) Could be used to simplify index expressions

Topic 11: Dependence-Based Transformations – p. 10/24



CS 426 Topic 11: Dependence-Based Transformations

University of British Columbia (UBC)

Unimodular Loop Transformations

These transfomations can be represented by a unimodular transformation
matrix T.

T for loop interchange =

(

0 1

1 0

)

T for loop reversal =

(

1 0

0 −1

)

T for loop skewing =

(

1 0

α 1

)

1. Any combination of unimodular transformations and inverses of unimodular
transformations is also unimodular transformation and can be represented
by a unimodular matrix which is the product of the corresponding matrices.

2. A unimodular transformation is legal, if and only if T ~d � ~0 for each distance
vector ~d.

Topic 11: Dependence-Based Transformations – p. 11/24



CS 426 Topic 11: Dependence-Based Transformations

University of British Columbia (UBC)

Loop Distribution

Informal Definition

Convert a loop nest containing two or more statements into two or more
distinct loop nests so that each statement appears in only a single resulting
loop nest.

Example

do i=2,N

S1: A[i] = B[i] + C[i]

S2: D[i] = A[i] * 2.0

S3: B[i+1] = A[i] * 3.0

enddo

do i=2,N

S1: A[i] = B[i] + C[i]

S3: B[i+1] = A[i] * 3.0

enddo

do i=2,N

S2: D[i] = A[i] * 2.0

enddo

Topic 11: Dependence-Based Transformations – p. 12/24



CS 426 Topic 11: Dependence-Based Transformations

University of British Columbia (UBC)

Loop Distribution

Motivation

Convert a loop-carried dependence within a loop into a loop-independent
dependence crossing two loops:

do i=2,N

S1: A[i] = B[i] + C[i]

S2: D[i] = A[i-1] * 2.0

enddo

do i=2,N

S1: A[i] = B[i] + C[i]

enddo

do i=2,N

S2: D[i] = A[i-1] * 2.0

enddo

Create perfect loops nests for other transformations like loop interchange

Topic 11: Dependence-Based Transformations – p. 13/24



CS 426 Topic 11: Dependence-Based Transformations

University of British Columbia (UBC)

Maximal Loop Distribution: Basic Strategy

Loops Without Branches

1. Identify the SCCs of the data dependence graph

Idea: Group statements in an SCC in a single loop nest

2. Sort the SCCs using a topological sort on the dependence graph

3. Generate distinct loop nests, one for each SCC, in sorted order

Loops With Branches

Same basic principles as above, but . . .

. . . if B cd
−→ S2 and B and S2 are in different SCCs:

1. Introduce an “execution variable,” Flag[], to record results of B

2. Use Flag[] to control execution of S2 in later loop nest

Topic 11: Dependence-Based Transformations – p. 14/24



CS 426 Topic 11: Dependence-Based Transformations

University of British Columbia (UBC)

Loop Fusion

Informal Definition Merge two or more distinct (perhaps non-adjacent) loops with
identical loop bounds into a single loop.
Examples
do i=1,N

A[i] = i*i

enddo

do i=1,N

B[i] = A[i] + 1

enddo

do i=1,N

A[i] = i*i

B[i] = A[i] + 1

enddo

do i=1,M

do j=1,N-1

A[j,i] = i*i + j*j

enddo

do j=1,N

B[j,i] = A[j,i] + i + j

enddo

enddo

! Peel j=N and then fuse:

do i=1,M

do j=1,N-1

A[j,i] = i*i + j*j

B[j,i] = A[j,i] + i + j

enddo

j = N

B[j,i] = A[j,i] + i + j

enddo

Topic 11: Dependence-Based Transformations – p. 15/24



CS 426 Topic 11: Dependence-Based Transformations

University of British Columbia (UBC)

Loop Fusion

Motivation

1. Increase cache reuse (if same array accessed in two loops)
⇐ Fundamental optimization for array languages

Fortran 90, CM-Fortran, HPF, MATLAB, APL
Example in F90:

A[1:M, 1:N] = B[1:M, 1:N] * 2
C[1:M, 1:N] = A[1:M, 1:N] + 1

2. Increase granularity of parallelism (work per iteration)
⇐ Important for shared-memory parallelism

(parallel loop + barrier model)
See Typed Fusion algorithm in Allen & Kennedy for an example of how
fusion can be used to improve shared memory parallelism.

Topic 11: Dependence-Based Transformations – p. 16/24



CS 426 Topic 11: Dependence-Based Transformations

University of British Columbia (UBC)

Legality of Loop Fusion

Fusion-Preventing Dependence

A loop-independent dependence from S1 to S2 in different loops is
fusion-preventing if fusing the two loops causes the dependence to become
a loop-carried dependence from S2 to S1.

Legality of Loop Fusion

Two loops can be fused if all 3 conditions hold :
1. Both have identical bounds (transform loops if needed)
2. There is no fusion-preventing dependence between them.
3. There is no path of loop-independent dependences between them that

contains a loop or statement that is not being fused with them.

Topic 11: Dependence-Based Transformations – p. 17/24



CS 426 Topic 11: Dependence-Based Transformations

University of British Columbia (UBC)

Loop Fusion: Illegal Cases

Example 1: Fusion-preventing dependence

do i=1,M

do j=2,N

A[j,i] = B[j-1,i] * 2

enddo

do j=2,N

B[j,i] = A[j,i] * 3

enddo

enddo

First inner loop can be modified to make fusion legal:

do i=1,M

do j=2,N

t[j] = B[j-1,i]

enddo

do j=2,N

A[j,i] = t[j] * 2

B[j,i] = A[j,i] * 3

enddo

enddo

Example 2: Path of loop-independent dependences
S1: A[:, :] = B[:, :] * 2

S2: C[:, :] = A[:, :] + ... ! do not want to fuse

S3: D[:, :] = C[:, :] + A[:, :] ! want to fuse with S1 but cannot

Topic 11: Dependence-Based Transformations – p. 18/24



CS 426 Topic 11: Dependence-Based Transformations

University of British Columbia (UBC)

Loop Strip Mining

Always safe.Informal Definition

Convert a single loop into two nested loops for a specified “block size”

Example

do i=1,N

A[i] = x + B[i] * 2

enddo

do ii=1,N,B

do i=ii, min(ii+B-1, N), 1

A[i] = x + B[i] * 2

enddo

enddo

Uses

Loop tiling: strip-mine and then interchange
multiple uses: for cache; for blocking parallel loops; . . .

Prefetching: strip-mine by cache line size; prefetch once per outer iteration

Instruction scheduling: strip-mine and then unroll inner loop

Topic 11: Dependence-Based Transformations – p. 19/24



CS 426 Topic 11: Dependence-Based Transformations

University of British Columbia (UBC)

Loop Alignment

Always safe.Informal Definition

Eliminate a carried dependence by increasing the number of iterations and
executing statements on different subsets of the iterations.
(Alternative to loop distribution)

Example

do i=2,N

A[i] = B[i] + C[i]

D[i] = A[i-1] * 2.0

enddo

i = 1

D[i+1] = A[i] * 2.0

do i=2,N-1

A[i] = B[i] + C[i]

D[i+1] = A[i] * 2.0 ! note subscripts

enddo

i = N

A[i] = B[i] + C[i]

Uses

Improve parallelism by eliminating carried dependences

Topic 11: Dependence-Based Transformations – p. 20/24



CS 426 Topic 11: Dependence-Based Transformations

University of British Columbia (UBC)

Scalar Replacement

Informal Definition

Replace an array reference with a scalar temporary.
Note: Use dependences to locate consistent re-use patterns

Example

do i = 1, n

do j = 2, n

x(j,i) = a(i) + x(j-1,i)

+ b(j,i)

enddo

enddo

do i = 1, n

t1 = a(i)

t2 = x(1,i)

do j = 2, n

x(j,i) = t1 + t2 + b(j,i)

t2 = x(j,i)

enddo

enddo

Uses

decrease number of loads and stores

enable allocator to keep (some) array refs in registers

⇒ often see improvements by factors of 2× to 3×

Topic 11: Dependence-Based Transformations – p. 21/24



CS 426 Topic 11: Dependence-Based Transformations

University of British Columbia (UBC)

Unroll and Jam

Balance between Memory Accesses and Computation

machine balance: βM =
fetches/cycle
flops/cycle

loop balance: βL =
fetches/iteration
flops/iteration

We want loops to be balanced or slightly compute-bound

if βL > βM , loop is memory-bound

if βL < βM , loop is compute-bound

Balance is becoming more important

memory latencies are increasing

flops/cycle is increasing

Topic 11: Dependence-Based Transformations – p. 22/24



CS 426 Topic 11: Dependence-Based Transformations

University of British Columbia (UBC)

Unroll and Jam: Improving Balance

Informal Definition

1. unroll the outer loop by k

2. fuse the resulting k inner loops into a single loop

Simple example:

do i = 1, n

do j = 1, n

a(i) = a(i) + b(j)

enddo

enddo

Scalar replacement works well for references
to a(i) but does not extract any reuse for b(j).

=⇒ βL =
1 fetch
1 flop

Unroll-and-jam (k = 2):

do i = 1, n-1, 2

do j = 1, n

a(i) = a(i) + b(j)

a(i+1) = a(i+1) + b(j)

enddo

enddo

Topic 11: Dependence-Based Transformations – p. 23/24



CS 426 Topic 11: Dependence-Based Transformations

University of British Columbia (UBC)

Unroll and Jam: Improving Balance (cont’d)

Unroll-and-jam Improves Balance:

do i = 1, n, 2

t0 = a(i+0)

t1 = a(i+1)

do j = 1, n

t3 = b(j)

t0 = t0 + t3

t1 = t1 + t3

enddo

a(i+0) = t0

a(i+1) = t1

enddo

βL =
1 fetch
2 flops

Uses one extra register for the inner loop.

Allows more efficient pipelining (if + takes
>= 2 cycles)

Topic 11: Dependence-Based Transformations – p. 24/24


	A Catalog of Transformations
	Optimizations Using the Loop Transformations
	Optimizations Using the Loop Transformations (cont'd)
	Loop Interchange
	Loop Interchange
	Legality of Loop Interchange
	Examples
	Profitability of Loop Interchange
	Loop Reversal
	Loop Skewing
	Unimodular Loop Transformations
	Loop Distribution
	Loop Distribution
	Maximal Loop Distribution: Basic Strategy
	Loop Fusion
	Loop Fusion
	Legality of Loop Fusion
	Loop Fusion: Illegal Cases
	Loop Strip Mining
	Loop Alignment
	Scalar Replacement
	Unroll and Jam
	Unroll and Jam: Improving Balance
	Unroll and Jam: Improving Balance (cont'd)

