
CS 426 Topic 12: Pointer Analysis

University of British Columbia

Definitions

Let r1, r2 be references in a program.
r1 or r2 may be of the form “x” or “*p” “**p”, “(*p)->q->i”, etc.

Alias: r1 are r2 are aliased if the memory locations accessed by r1 and r2
overlap.

Alias Relation: A set of ordered pairs {(ri, rj)} denoting aliases that may hold at a
particular point in a program.
Sometimes called a may-alias relation.

Points-to Pair: An ordered pair (r1, r2) denoting that one of the memory locations
of r1 may hold the address of one of the memory locations of r2.
Also written: r1 → r2. Say “r1 points to r2”.

Points-to Set: {(ri, rj)} : A set of points-to pairs that may hold at a particular point
in a program.

Points-To Graph: A directed graph where each Node represents one or more
memory objects; an Edge: p −→ q means some object in node p may hold a
pointer to some object in node q.

Topic 12: Pointer Analysis – p. 1/23

CS 426 Topic 12: Pointer Analysis

University of British Columbia

Why Is This Difficult?

1. Pointers to pointers, which can occur in many ways:
take address of pointer
pointer to structure containing pointer
pass a pointer to a procedure by reference

2. Aggregate objects: structures and arrays containing pointers

3. Recursive data structures (lists, trees, graphs, etc.)
closely related problem: anonymous heap locations

4. Control-flow: analyzing different data paths

Topic 12: Pointer Analysis – p. 2/23

CS 426 Topic 12: Pointer Analysis

University of British Columbia

Why Is This Difficult? (cont’d)

5. Interprocedural analysis is crucial. Challenges:
callee may modify a pointer used in the caller
indirect function calls (i.e., through a function pointer)
context-sensitive side-effects of functions
formals may be aliased to each other or to globals
recursion

6. Compile-time cost
Number of variables, | V |, can be large

Number of alias pairs at a point can be O(| V |2)

Topic 12: Pointer Analysis – p. 3/23

CS 426 Topic 12: Pointer Analysis

University of British Columbia

Common Simplifying Assumptions

1. Aggregate objects: arrays (and perhaps structures) containing pointers
Simple solution: treat as a single big object!
Commonplace for arrays.
Not a good choice for structures? see Intel paper
Pointer arithmetic is only legal for traversing an array:

q = p± i and q = &p[i] are handled the same as q = p

2. Recursive data structures (lists, trees, graphs, etc.)
Compute aliases, not “shape”
=⇒ Don’t prove something is a linked-list or a binary tree
k-limiting: only track k or fewer levels of dereferencing
Use simplified naming schemes for heap objects (later slide)

3. Control-flow: analyzing different data paths

Could ignore the issue and compute a single common solution!
Note: No consensus on this issue

Topic 12: Pointer Analysis – p. 4/23

CS 426 Topic 12: Pointer Analysis

University of British Columbia

Naming Schemes for Heap Objects

The Naming Problem: Example 1

brillig() {

// Two distinct objects

T* p = slithy(n);

T* q = slithy(m);

}

T* slithy(int num) {

// Many objects allocated here

return new T(...);

}

Q. Should we try to distinguish the objects created in brillig()?

The Naming Problem: Example 2

T* makelist(int len) {

T* newObj = new T; // Many distinct objects allocated here

newObj->next = (--len == 0)? NULL : makelist(len);

}

Q. Can we distinguish the objects created in makelist()?

Topic 12: Pointer Analysis – p. 5/23

CS 426 Topic 12: Pointer Analysis

University of British Columbia

Naming Schemes for Heap Objects

Possible Naming Strategies

1. H : One name for the entire heap

2. Ht : One name per type t (for type-safe languages)

3. Hl : One name per heap allocation site (line number) l

4. Hc : One name per (acyclic) call path c aka “cloning”

5. Hf : One name per immediate caller f (or call-site) i.e., only one-level
cloning

Topic 12: Pointer Analysis – p. 6/23

CS 426 Topic 12: Pointer Analysis

University of British Columbia

Terminology: Realizable vs. Unrealizable Paths

Definition: Realizable Path
A program path is realizable iff every procedure call on the path returns control
to the point where it was called (or to a legal exception handler or program exit)
Whole-program Control Flow Graph?
Conceptually extend CFG to span whole program:

split a call node in CFG into two nodes: CALL and RETURN

add edge from CALL to ENTRY node of each callee

add edge from EXIT node of each callee to RETURN

Problem: This produces many unrealizable paths

Focusing only on realizable paths requires a context-sensitive analysis.

Topic 12: Pointer Analysis – p. 7/23

CS 426 Topic 12: Pointer Analysis

University of British Columbia

Flow-sensitive vs. Flow-insensitive Analysis

General definitions
A flow-sensitive analysis is one that computes a distinct result for each program
point. A flow-insensitive analysis generally computes a single result for an entire
procedure or an entire program.
Note: A flow-insensitive algorithm effectively ignores the order of statements
completely!
Alias Analysis

Flow-sensitive : At program point n, compute alias pairs < a, b > that may hold at
n for some path from program entry to n.

Flow-insensitive : Compute all alias pairs < a, b > such that a may be aliased to b

at some point in a program (or function).

Important special cases

Local scalar variables: SSA form gives flow-sensitivity

Malloc or new : Allocates “fresh” memory, i.e., no aliases

Topic 12: Pointer Analysis – p. 8/23

CS 426 Topic 12: Pointer Analysis

University of British Columbia

Context-sensitive vs. Context-insensitive Analysis

General definitions
A context-sensitive interprocedural analysis computes results that may hold only
for realizable paths through a program. Otherwise, the analysis is
context-insensitive.
Pointer Analysis
Apply above definitions directly using points-to pairs < a, b >.
But important variations exist:

Heap cloning vs. no cloning: Cloning gives greater context-sensitivity

Bottom-up vs. top-down: Does final result for a procedure include only
“realizable” behavior from all contexts?

Handling of recursive functions: Does analysis retain context-sensitivity
within SCCs in the call graph?

Topic 12: Pointer Analysis – p. 9/23

CS 426 Topic 12: Pointer Analysis

University of British Columbia

Field-sensitive vs. Field-insensitive Analysis

General definitions
A field-sensitive analysis is one that tracks distinct behavior for individual fields
of a record type. Otherwise, it is field-insensitive
Challenges

Complexity : For certain analysis techniques, converts linear representation
to worse (perhaps even exponential)

Non-type-safe programs: May have to track behavior at every byte offset
within a structure (not just each field)

Topic 12: Pointer Analysis – p. 10/23

CS 426 Topic 12: Pointer Analysis

University of British Columbia

Some simple, flow-insensitive algorithms

3 popular algorithms

Any address

Anderson, 1994

Steensgard, 1996

Any address

single points-to set:
all variables whose address is taken, passed by reference, etc.

any pointer may point to any variable in this set

simple, fast, linear-time algorithm

common choice for function pointers, and for global variables
e.g., for initial call graph

Topic 12: Pointer Analysis – p. 11/23

CS 426 Topic 12: Pointer Analysis

University of British Columbia

Some simple, flow-insensitive algorithms

Example:

T *p, *q, *r;

void main() {

p = new T;

f();

g(&p);

p = new T;

. . . = *p;

}

void f() {

q = new T;

g(&q);

r = new T;

}

void g(T** fp) {

T local;

if (. . .)

fp = &local;

. . .

}

Model argument passing and returns with assignment:

g(&p): Insert: Where?
fp = &p

p = *fp

Topic 12: Pointer Analysis – p. 12/23

CS 426 Topic 12: Pointer Analysis

University of British Columbia

Anderson’s Algorithm

Properties:

Generally the most precise flow- and context-insensitive algorithm

Compute a single points-to graph for entire program

Refinement by Burke []: Separate points-to graph for each function

Cost is O(n3) for program with n assignments

Acceptable precision in practice for optimization, perhaps not for static
analysis tools for security, reliability

Topic 12: Pointer Analysis – p. 13/23

CS 426 Topic 12: Pointer Analysis

University of British Columbia

Anderson’s Algorithm: Conceptual

Initialize: Points-to graph with a separate node per variable

Iterate until convergence:
At each statement, evaluate the appropriate rule:

p = &x Add p → x

p = q ∀x : if q → x, add p → x

*p = q ∀x, r: if q → x and p → r, add r → x

p = *q ∀x, r: if q → x and x → r, add p → r

What happens if we process p = q after q = &G?

Topic 12: Pointer Analysis – p. 14/23

CS 426 Topic 12: Pointer Analysis

University of British Columbia

Anderson’s Algorithm: Actual

Actual Algorithm (Sketch):

Build initial "inclusion constraint graph" and initial points-to sets

Iterate until converged:
Update constraint graph for new points-to pairs transitive closure
Update the points-to sets according to new constraints

Inclusion Constraint Graph:

Add constraint (”set inclusion”) edges for pointer assignments:

Points-to pair p = &x add loc(x) → p

Direct constraint p = q add q → p

Indirect constraint *p = q ∀v: v ∈ pts(p), add q → v

Indirect constraint p = *q ∀v: v ∈ pts(q), add v → p

Topic 12: Pointer Analysis – p. 15/23

CS 426 Topic 12: Pointer Analysis

University of British Columbia

Anderson’s Algorithm: Cycle Elimination

Cycle in constraint graph:

p → q → r → p

⇒ pts(p) ⊇ pts(q) ⊇ pts(r) ⊇ pts(p)

⇒ pts(p) = pts(q) = pts(r) = pts(p)

⇒ No need to propagate points-to pairs around such cycles!

Offline cycle elimination

“Off-line Variable Substitution for Scaling Points-To Analysis,” Atanas
Rountev and Satish Chandra, PLDI 2000.

Find cycles due to direct pointer copies (direct constraints)

Collapse each cycle into a single node

Significantly reduces size of constraint graph Table 2, [PLDI07]

But many more cycles can be induced by indirect constraint edges:
⇒ Need cycle elimination during transitive closure ("online")

Topic 12: Pointer Analysis – p. 16/23

CS 426 Topic 12: Pointer Analysis

University of British Columbia

Anderson’s Algorithm: Online Cycle Elimination

Several Approaches

Fähndrich, Foster, Aiken and Su (PLDI ’98): Show that cycle elimination is essential for scalability.
Limited DFS on each edge insertion to find some cycles.

Heintze and Tardieu (PLDI 2001): Delay adding indirect constraint edges until querying for aliases.
"A million lines of code per second."

Hardekopf and Lin (PLDI 2007):

Lazy cycle detection: Try to detect cycles only when their effect is observable: two variables
have identical points-to sets

Hybrid cycle detection: Build special offline constraint graph with “ref nodes” for dereferenced
variables (e.g., *p). Use this graph to find cycles. These cycles will expose many (but not all)
online cycles without online graph traversal. When combined with another cycle detection
algorithm, greatly reduces cycle detection costs. [Table 4, Figure 8]

Topic 12: Pointer Analysis – p. 17/23

CS 426 Topic 12: Pointer Analysis

University of British Columbia

Steensgard’s Algorithm

Principles of Prog. Languages, ’96
Unification

Conceptually: restrict every node to only one outgoing edge (on the fly)

If p → x and p → y, merge x and y “unify”

⇒ All objects “pointed to” by p are a single equivalence class

Algorithm

For each statement, merge points-to sets:
e.g., p = q:
Merge two equivalence classes (targets of p and of q)

This may cause other nodes to collapse!

Use Tarjan’s “union-find” data structure to record equivalence classes:
Non-iterative algorithm, almost-linear running time: O(nα(n, n))

Again, single solution for entire program

Topic 12: Pointer Analysis – p. 18/23

CS 426 Topic 12: Pointer Analysis

University of British Columbia

Steensgard vs. Anderson

Consider assignment p = q,
i.e., only p is modified, not q

Subset-based Algorithms

Anderson’s algorithm is an example

Add a constraint: Targets of q must be subset of targets of p

Graph of such constraints is also called “inclusion constraint graphs”

Enforces unidirectional flow from q to p

Unification-based Algorithms

Steensgard is an example

Merge equivalence classes: Targets of p and q must be identical

Assumes bidirectional flow from q to p and vice-versa

Topic 12: Pointer Analysis – p. 19/23

CS 426 Topic 12: Pointer Analysis

University of British Columbia

Which Pointer Analysis Should I Use?

Hind & Pioli, ISSTA, Aug. 2000
Goal

Compared 5 algorithms (4 flow-insensitive, 1 flow-sensitive):
Any address
Steensgard
Anderson
Burke (like Anderson, but separate solution per procedure)
Choi et al. (flow-sensitive)

Topic 12: Pointer Analysis – p. 20/23

CS 426 Topic 12: Pointer Analysis

University of British Columbia

Which Pointer Analysis Should I Use? (cont’d)

Metrics

1. Precision: number of alias pairs

2. Precision of important optimizations: MOD/REF, REACH, LIVE, flow
dependences, constant prop.

3. Efficiency: analysis time/memory, optimization time/memory

Benchmarks

23 C programs, including some from SPEC benchmarks

Topic 12: Pointer Analysis – p. 21/23

CS 426 Topic 12: Pointer Analysis

University of British Columbia

Summary of Results

Hind & Pioli, ISSTA, Aug. 2000
1. Precision: Table 2

Steensgard much better than Any-Address (6x on average)

Anderson/Burke significantly better than Steensgard (about 2x)

Choi negligibly better than Anderson/Burke

2. MOD/REF precision: Table 2

Steensgard much better than Any-Address (2.5x on average)

Anderson/Burke significantly better than Steensgard (15%)

Choi very slightly better than Anderson/Burke (1%)

Topic 12: Pointer Analysis – p. 22/23

CS 426 Topic 12: Pointer Analysis

University of British Columbia

Summary of Results (cont’d)

3. Analysis cost: Table 5

Any-Address, Steensgard extremely fast

Anderson/Burke about 30x slower

Choi about 2.5x slower than Anderson/Burke

4. Total cost (analysis + optimizations): Table 5

Steensgard, Burke are 15% faster than Any-Address!

Anderson is as fast as Any-Address!

Choi only about 9% slower

Topic 12: Pointer Analysis – p. 23/23

	Definitions
	Why Is This Difficult?
	Why Is This Difficult? (cont'd)
	Common Simplifying Assumptions
	Naming Schemes for Heap Objects
	Naming Schemes for Heap Objects
	Terminology: Realizable vs. Unrealizable Paths
	Flow-sensitive vs. Flow-insensitive Analysis
	Context-sensitive vs. Context-insensitive Analysis
	Field-sensitive vs. Field-insensitive Analysis
	Some simple, flow-insensitive algorithms
	Some simple, flow-insensitive algorithms
	Anderson's Algorithm
	Anderson's Algorithm: Conceptual
	Anderson's Algorithm: Actual
	Anderson's Algorithm: Cycle Elimination
	Anderson's Algorithm: Online Cycle Elimination
	Steensgard's Algorithm
	Steensgard vs. Anderson
	Which Pointer Analysis Should I Use?
	Which Pointer Analysis Should I Use? (cont'd)
	Summary of Results
	Summary of Results (cont'd)

