
CS 619 Introduction to OO Design
and Development

OO Domain Models (Part 1)

Fall 2014

Problem Decomposition

5. Domain Modeling

Problem Decomposition (1/2)

10

Object-Oriented Decomposition Functional Decomposition

Decompose according to the
objects a system must manipulate.
⇒ several coupled “is-a” hierarchies

Decompose according to the
functions a system must perform.
⇒ single “subfunction-of” hierarchy

Example: Order-processing software for mail-order companyExample: Order-processing software for mail-order company

Order
- place
- price
- cancel

Customer
- name
- address

LoyalCustomer
- reduction

OrderProcessing
- OrderMangement

• placeOrder
• computePrice
• cancelOrder

- CustomerMangement
• add/delete/update

�

Problem Decomposition

5. Domain Modeling

Problem Decomposition (2/2)

11

Object-Oriented Decomposition Functional Decomposition

 ⇒ distributed responsibilities ⇒ centralized responsibilities

Example: Order-processing software for mail-order companyExample: Order-processing software for mail-order company

Order::price(): Amount
 {sum := 0
 FORALL this.items do
 {sum := sum + item. price}
 sum:=sum-(sum*customer.reduction)
 RETURN sum
 }

computeprice(): Amount
 {sum := 0
 FORALL this.items do
 sum := sum + item. price
 IF customer isLoyalCustomer THEN
 sum := sum - (sum * 5%)
 RETURN sum
 }Customer::reduction(): Amount

 { RETURN 0%}
LoyalCustomer::reduction(): Amount
 { RETURN 5%}

computeprice(): Amount
 {sum := 0
 FORALL this.items do
 sum := sum + item. price
 IF customer isLoyalCustomer THEN
 sum := sum - (sum * 5%)
 RETURN sum
 }

�

Problems with Functional Decomposition
!  Functional decomposition does not respond well

to changes
–  Creates designs that centered around a “main

program” " Poor modularity and poor encapsulation.
–  Nothing prevents dependencies from forming

throughout the code " changes tend to percolate
through the code

 weak cohesion and tight coupling (BAD!)
Translation: it does too many things and has too many
dependencies

�

OO decomposition
!  A central distinction between OO and functional

decomposition is the division by objects rather than by
functions or procedurals during decomposition.

!  Abstraction refers to the set of concepts that some

entity provides you
!  Encapsulation refers to a set of language-level

mechanisms or design techniques that hide
implementation details of a class/module/subsystem from
other classes/modules/subsystems.

Strong cohesion and loose coupling (GOOD!)
 �

OO Analysis

How to do functional decomposition with an object-
oriented syntax:

5. Domain Modeling

God Classes

13

getName
getAddress

Participant

isLoyalCustomer

Customer
Shipping
Company

placeOrder
computePrice
registerComplaint
cancelOrder
returnProduct
sendCatalogue

OrderManager

... or how to do functional decomposition with an object-oriented syntax

Symptoms
• Lots of tiny “provider” classes, mainly providing accessor operations

+ most of operations have prefix “get”, “set”
• Inheritance hierarchy is geared towards data and code-reuse

+ “Top-heavy” inheritance hierarchies
• Few large “god” classes doing the bulk of the work

+ suffix “System”, “Subsystem”, “Manager”, “Driver”, “Controller”

�

OO Analysis
How to do functional decomposition with an object-
oriented syntax

Symptoms
!  Few large “god” classes doing the bulk of the work
!  Lots of tiny “provider” classes, mainly providing

accessor operations
 most of operations have prefix “get”, “set”

!  Inheritance hierarchy is geared towards data and
code-reuse

 “top-heavy” inheritance hierarchies

�

Domain Model
Domain Model: visualization of domain concepts.
!  illustrates meaningful conceptual classes in a

problem domain.
!  is a visual representation of the decomposition of

a domain into individual conceptual classes
!  is a representation of real-world concepts, not

software components.
!  is NOT a set of diagrams describing software

classes, or software objects and their
responsibilities.

	

Domain Model

At the analysis level, our focus is on capturing
concepts

–  focus on the big picture
–  should be in terms of your business domain
–  should be meaningful to stakeholders

3

Product
+ code : String
+ name : String [2]
+ price : Int = 0
+ priceAfterDiscount(Dicount d) : Int
+ priceAfterTax(Discount d, Tax t) : Int

Product
name
Price

Domain Model contains:
•  Conceptual Classes
•  Attributes of conceptual classes
•  Associations between conceptual classes

!  Reuse or modify existing models.

This is the first, best, and usually easiest approach.
There are published, well-crafted domain models and
data models (which can be modified into domain
models) for many common domains, such as inventory,
finance, health, and so forth.

!  Use a category list
!  Noun/Verb Analysis

Ways to Find Conceptual Classes:

��

Use a category list

��

Use a category list

��

Noun/verb analysis
!  Sources to find conceptual classes: your

requirements, e.g. use cases

1.  The system inspects the basket to determine which item
to buy.

2.  The system then determines the price of the item.
3.  The system shows the item’s description and price to the

customer.
4.  This price is then charged to the customer.

Noun / noun-phrases " class
Possessed noun / noun-phrases " attribute
Verb " responsibility/operation

��

Noun/verb analysis

Nouns
•  system
•  basket
•  item
•  (item’s) price
•  (item’s) description
•  customer

Responsibilities
•  to inspect basket to determine which item to buy
•  to determine the price of the item to buy
•  to show the item’s description and price
•  to charge price to a customer

Item
Price
description

 Sample Conceptual class

1.  The system inspects the basket to determine which item
to buy.

2.  The system then determines the price of the item.
3.  The system shows the item’s description and price to the

customer.
4.  This price is then charged to the customer.

��

Identify Conceptual Classes
by Noun Phrase:

!  Fully dressed Use Cases are good for this type of
linguistic analysis.
Also in other documents, or the minds of experts.

!  It�s not strictly a mechanical process:
Words may be ambiguous
Different phrases may represent the same concepts.

Conceptual classes are not actual design classes!

��

Should destination be an attribute of Flight, or a separate
conceptual class Airport?

Should store be an attribute of Sale”, or a separate
conceptual class Store?

Example:

��

Represent something as an attribute when it
should have been a conceptual class.

A rule of thumb:

If we do not think of some conceptual class X as a
number or text in the real world,
Then X is probably a conceptual class, not an
attribute

Common Mistakes I

��

!  Assume the following:
–  An Item instance represents a physical item in a store;

as such, it may even have a serial number.
–  An Item has a description, price, and itemID, which are

not recorded anywhere else.
–  Every time a real physical item is sold, a corresponding

software instance of Item is deleted from "software
land."

!  With these assumptions, what happens if the
certain item is sold out in the system, and we’d
like to know its price?

Example

�	

Missing description class

A description class contains information that
describes something else.

For example, a ProductDescription that records the price,
picture, and text description of an Item.

Common Mistakes II

�

Example

Item

description
price
serial number
itemID

ProductDescription

description
price
itemID

Item

serial number
Describes Better

Worse

1 *

The need for description classes is common in sales,
product, and manufacturing service domains, where a
description of things is required.

��

Example: Descriptions in the Airline Domain

Worse

Flight

date
time

FlightDescription

number

Airport

name

Describes-flights-to

Described-by

Flight

date
number
time

Airport

name
Flies-to

Better

1*

1*

1

*

��

