CS 619 Introduction to OO Design
and Development

odeling

Fall 2014

Static and Dynamic Modeling

e Dynamic models,Such as UML interaction

C

lagrams (sequence diagrams or communication

C

lagrams), help design the logic, the behavior of

t

ne code or the method bodies.

e Static models, such as UML class diagrams, help
design the definition of packages, class names,
attributes, and method signatures (but not method

b
O

DiceGame I
. o) \
VicaGeore Die ._‘is:’__‘ 1
L FaceNalue)

\;‘.“‘6” co\\0)

1
t
L fo“

UML Usess Di «a&w\ U‘N_ SQ\SJQ\CL @ic bcqw\

Class-level design

e \What classes will we need to implement a
system that meets our requirements?

e \What fields and methods will each class
have?

e How will the classes interact with each other?

How do we design classes?

e Class identification from Software Requirement
Specification

- nouns are potential classes, objects, fields

— verbs are potential methods or responsibilities of a
class

e CRC card exercises
— write down classes' names on index cards
- next to each class, list the following:

e responsibilities: problems to be solved; short verb
phrases

e collaborators: other classes that are sent
messages by this class (asymmetric)

CRC cards

Costomer

Plaus orders
Koss rome

kroass addres

Krors (ines Number
s aﬁ Iusfo7

Onder

Introduction to UML
e Unified Modeling Language (UML): depicts
an OO0 system

- programming languages are not abstract enough
for OO design

- UML is an open standard; lots of companies use it

e many programmers either know UML or a "UML-like"
variant

e UML s ...

— a descriptive language: rigid formal syntax (like
programming)

— a prescriptive language: shaped by usage and
convention

- UML has a rigid syntax, but some don't follow it
religiously

Diagram of one class

e class name in top of box

- write <<interface>> on top of interfaces' names

— use jtalics for an abstract class name

e attributes
- should include all fields of the object
— also includes derived "properties”

e operations / methods
— may omit trivial (get/set) methods

Rectangle

- wyicith: int
- height: int
farea: double

+ Rectangle(wvidth: int, height: int)
+ distance(r: Rectangle): double

Student

name:String
4d:int

e but don't omit any methods from an interfaci| 4otal Stude ntstint

— should not include inherited methods

#getlD(Tint

+getNam e(): String

~getE mail Address(1 String
+etT otal Students(Tint

Class attributes

e attributes (fields, instance variables)
— visibility name : type [count | = defaultValue

Rectangle
_ visibility: + public AR
- height: int
prIOteCted larea: double
prlvate + Rectangle(width: int, height: int)
~ package (defau|t) + distance(r: Rectangle): double
/ derived
Student

— underline static attributes

name:String
4d:int
dotalStudentsint

— derived attribute: not stored, but can
be computed from other attribute values

| | RogetiD(xint
— attribute example: +getham e0): String

- balance : double = 0.00 ~getE mail ddress(r String
+etT otal Students(Tint

Class operations / methods

e operations / methods
— visibility name (parameters) : returnType

— underline static methods
— parameter types listed as (name: type)

— omit returnType on constructors and
when return is void

- method example:

+ distance(p1: Point, p2: Point): double

Rectangle

- wictth: int
- height: int
farea: double

+ Rectangle(wvidth: int, height: int)
+ distance(r: Rectangle): double

Student

name:String
4d:int
dotalStudentsint

#getlD(Tint

+getNam e(): String

~getE mail Address(X String
+etT otal Students(Tint

Inheritance relationships

— hierarchies drawn top-down with arrows «interface»
pointing upward to parent Shape
. . + getArea(): double
— line/arrow styles differ based on parent: z
® class : solid, black arrow |
e abstract class : solid, white arrow RectangufarShape
. . - width: int
e interface : dashed, white arrow | peiit it
farea: double
RectangularShape(width: int, height: int)
+ containsip: Point): boolean
: .. . + getArea(): double
— Often don't draw trivial / obvious
relationships, such as drawing the class T
Object as a parent Rectangle
- % int
-y int

+ Rectangle(x: int, v. int, width: int, height: int)
+ contains(p: Point): boolean
+ distance(r: Rectangle): double

Association

navigability (direction)

multiplicity (how many are used)
o = 0, 1, or more
o 1 = 1 exactly
e 2.4 = between 2 and 4, inclusive
e 3. = 3 ormore

name (stereotype, what relationship the objects have)
A —>] B
-myB: B* +service ()
+doSomething () '

myB->service(); Arrow points in direction
of the dependency

Composition

e A strong kind of whole-part aggregation

e A composition relationship implies that

- an instance of the part (such as a Square) belongs to
only one composite instance (such as one Board) at a
time,

- the part must always belong to a composite (no free-
floating Fingers), and

- the composite is responsible for the creation and
deletion of its parts either by itself creating/deleting the
parts, or by collaborating with other objects.

mposition

07 composili \
: position means
Hond @ Figer -2 partinstance (Square) can only be part of one
0. composite (Board) at a time
composition H he composite has sole responsibility for management of

its parts, especially creation and deletion

1 1 X
Board 0—40 Square Sale -0—1 SalesLineltem

Dependency

e Dependency is illustrated with a dashed arrow line
from the client to supplier.

e some common types in terms of objects and class
diagrams :
- having an attribute of the supplier type

- sending a message to a supplier; the visibility to the
supplier could be:

e an attribute, a parameter variable, a local variable, a global
variable, or class visibility (invoking static or class methods)

— receiving a parameter of the supplier type
- the supplier is a superclass or interface

Dependency

dependency

the Sale has parameter visibility to a
ProductDescription, and thus some kind of

ProductDescription

Sale

updatePriceFor(ProductDescription)

SalesLineltem

lineltems

UML Sequence Diagram

An "interaction diagram” that models a single
scenario executing in the system

e Describes the flow of messages, events,
actions between objects.

e Used during analysis and design to

document and understand the logical flow of
your system.

e Emphasis on time ordering!

UML Sequence Diagram

e participant: object or entity that acts in the
diagram

— diagram starts with an unattached "found
message" arrow

e message: communication between
participant objects

e the axes in a sequence diagram:
- horizontal: which object/participant is acting
— vertical: time (down -> forward in time)

UML Sequence Diagram

tudent: Student . Seminar . Course

[

enrollStudent(aStudent) o

N ———-]
| —

_______________________________ seminartistory

-]

omponents

enrollStudent(aStudent)

getSeminarHistory()

Components

Messages between objects

e messages (method calls) indicated by arrow
to other object

— write message name and arguments above arrow
— Synchronized call : method call waits for response
— Asynchronized call: without waiting for return

value
:Web :Online .
Client Bookshop :Service ‘Task
search start

Synchronized call Asynchronized call

Messages between objects

e Reply message:

e Create message: send to
a life line to create itself.

e Delete message: send
to terminate another
lifeline

:Web :Online
Client Bookshop
search

:Online

Bookshop
— — —=>{ :Account

:Online .

Bookshop :Account

«destroy»

Indicating method calls

e activation: thick box over object's life line;
drawn when object's method is on the stack

— either that object is running its code,
or it is on the stack waiting for another object's
method to finish

- nest activations to indicate self call or recursion
\

ctivation s
Controller Ao x
; |
|
ﬁ— -
(----- Nesting |~ —|)
----- -'
< I % ek \on |

bjects

a Handler
query database
|
e a Query
e
A Command
new > a Database
: Statement
creation
execute
-
deletion
= from other
results object
extract results
[close |
T E <
B K
results < N Tt

|

Note: older create and delete message notations are used here

d loops

. careful : regular : .
e Distributor Distributor sieecanger
dispatch |
loop) [for each line item]
o alt) [value > $10000] fomme
dispatch
»
[else]
dispatch

gua.rd

confirm

1y

an Order an Order Line aProduct aCustomer
calculatePrice | . | } | |
o = getQuantity .
Fa . 2N " |
getProduct . parkicipant | ne |
mesenge ____aProduct | |
Y activation
getPricingDetails | return - |) ' |
| |_|K |
. | | |
calculateBasePrice |- self-call | |
B AL
T | | |
message
calculateDliscounts l | |
< ' | getDiscountinfo | } |

ar%evelopment Envi

ALka, WithdrawMoney |

[h usel_ -
|
|

1.1: checkBalance |
1.2: balance

.3: decrementBalance(amoun

1.4: dispenseMagney(amount)

f
|
|
|
|
=
|
|
|
|
|
|
|
|
I

1.5: printReceipt

1.6: done

1.7: Eject Card

1.8: End transaction

Why not just code it?

Sequence diagrams can be close to the code level. So why not
Just code up that algorithm rather than drawing it as a sequence
diagram?

- a good sequence diagram is still a bit above the level of
the real code (not all code is drawn on diagram)

— sequence diagrams are language-agnostic
— nhon-coders can do sequence diagrams
— easier to do sequence diagrams as a team

— can see many objects/classes at a time on same page
(visual bandwidth)

The goal of UML is communication and understanding

Sequence diagram exercise

e \Write a sequence diagram for the following
poker casual use case, Start New Game Round

The scenario begins when the player chooses to start a new
round in the Ul. The Ul asks whether any new players want to
join the round; if so, the new players are added using the UI.

All players' hands are emptied into the deck, which is then
shuffled. The player left of the dealer supplies an ante bet of the
proper amount. Next each player is dealt a hand of two cards
from the deck in a round-robin fashion; one card to each player,
then the second card.

If the player left of the dealer doesn't have enough money to
ante, he/she is removed from the game, and the next player
supplies the ante. If that player also cannot afford the ante, this
cycle continues until such a player is found or all players are
removed.

O
(D
Iz
Y

Tahble Plavyer lefimostPlaver: Plaver newPlaver: Plaver

addCards

1
shume

* [while left player cannot ante and players are remaining]

removePlayer{leftmostPlayen

newPlayers | X :

: i :

1 1 1

1 1 1

addPlayers ! : :
: : new

1 1

1 1

1 1

1 1

L 1 1

newGame ! 1 1

| * [for each player] : :

1 1

emptyHand : :

1

1

1

1

1

1

-1

1
I 1

I if [players are remaining]
1

Sy WY S A P

! ante
1
I ! bet
T~ [foreach player, twice]” " """ T TTTTTTTTTTTTTTTTTTTTT
S [play . 1
drawCard !
getCard

__} ----- go to End Game scenatrio hI

-___|:.______-__.

-_________________________‘:'.--_________________________________-- IR

