
CS 619 Introduction to OO Design
and Development

UML Modeling

Fall 2014

2

l  Dynamic models,Such as UML interaction
diagrams (sequence diagrams or communication
diagrams), help design the logic, the behavior of
the code or the method bodies.

l  Static models, such as UML class diagrams, help
design the definition of packages, class names,
attributes, and method signatures (but not method
bodies).

Static and Dynamic Modeling

Class-level design

l  What classes will we need to implement a
system that meets our requirements?

l  What fields and methods will each class
have?

l  How will the classes interact with each other?

3

How do we design classes?
l  Class identification from Software Requirement

Specification
–  nouns are potential classes, objects, fields
–  verbs are potential methods or responsibilities of a

class
l  CRC card exercises

–  write down classes' names on index cards
–  next to each class, list the following:

l responsibilities: problems to be solved; short verb
phrases

l collaborators: other classes that are sent
messages by this class (asymmetric)

4

CRC cards

5

Introduction to UML
l  Unified Modeling Language (UML): depicts

an OO system
–  programming languages are not abstract enough

for OO design
–  UML is an open standard; lots of companies use it

l  many programmers either know UML or a "UML-like"
variant

l  UML is ...
–  a descriptive language: rigid formal syntax (like

programming)
–  a prescriptive language: shaped by usage and

convention

–  UML has a rigid syntax, but some don't follow it
religiously

6

Diagram of one class
l  class name in top of box

–  write <<interface>> on top of interfaces' names
–  use italics for an abstract class name

l  attributes
–  should include all fields of the object
–  also includes derived "properties"

l  operations / methods
–  may omit trivial (get/set) methods

l  but don't omit any methods from an interface!
–  should not include inherited methods

7

Class attributes

l  attributes (fields, instance variables)
–  visibility name : type [count] = defaultValue

–  visibility: + public
 # protected
 - private
 ~ package (default)
 / derived

–  underline static attributes
–  derived attribute: not stored, but can

be computed from other attribute values

–  attribute example:
- balance : double = 0.00

8

Class operations / methods
l  operations / methods

–  visibility name (parameters) : returnType

–  underline static methods
–  parameter types listed as (name: type)
–  omit returnType on constructors and

when return is void

–  method example:

+ distance(p1: Point, p2: Point): double

9

Inheritance relationships
–  hierarchies drawn top-down with arrows

pointing upward to parent

–  line/arrow styles differ based on parent:
l  class : solid, black arrow
l  abstract class : solid, white arrow
l  interface : dashed, white arrow

–  Often don't draw trivial / obvious
relationships, such as drawing the class
Object as a parent

10

Association
navigability (direction)

multiplicity (how many are used)
l  * ⇒ 0, 1, or more
l  1 ⇒ 1 exactly
l  2..4 ⇒ between 2 and 4, inclusive
l  3..* ⇒ 3 or more

 name (stereotype, what relationship the objects have)

Arrow points in direction
of the dependency

myB->service();
11

l  A strong kind of whole-part aggregation
l  A composition relationship implies that

–  an instance of the part (such as a Square) belongs to
only one composite instance (such as one Board) at a
time,

–  the part must always belong to a composite (no free-
floating Fingers), and

–  the composite is responsible for the creation and
deletion of its parts either by itself creating/deleting the
parts, or by collaborating with other objects.

Composition

12

Composition

13

l  Dependency is illustrated with a dashed arrow line
from the client to supplier.

l  some common types in terms of objects and class
diagrams :
–  having an attribute of the supplier type
–  sending a message to a supplier; the visibility to the

supplier could be:
l  an attribute, a parameter variable, a local variable, a global

variable, or class visibility (invoking static or class methods)

–  receiving a parameter of the supplier type
–  the supplier is a superclass or interface

Dependency

14

Dependency

SalesLineItem

...

...

ProductDescription

...

...

1..*
lineItems

Sale

...

updatePriceFor(ProductDescription)
...

the Sale has parameter visibility to a
ProductDescription, and thus some kind of
dependency

15

UML Sequence Diagram

An "interaction diagram" that models a single
scenario executing in the system

l  Describes the flow of messages, events,

actions between objects.
l  Used during analysis and design to

document and understand the logical flow of
your system.

l  Emphasis on time ordering!

16

UML Sequence Diagram

l  participant: object or entity that acts in the
diagram
–  diagram starts with an unattached "found

message" arrow
l  message: communication between

participant objects
l  the axes in a sequence diagram:

–  horizontal: which object/participant is acting
–  vertical: time (down -> forward in time)

17

18

UML Sequence Diagram

Components
Objects: aStudent is a specific
instance of the Student class

Specific
Instance of an

Object

Generic (unnamed)
objects Generic (unnamed)

objects of class type Seminar
 and Course

19

Components

lifeline
execution

20

l  messages (method calls) indicated by arrow
to other object
–  write message name and arguments above arrow
–  Synchronized call : method call waits for response
–  Asynchronized call: without waiting for return

value

Messages between objects

21
Synchronized call Asynchronized call

l  Reply message:

l  Create message: send to
 a life line to create itself.

l  Delete message: send
 to terminate another
 lifeline

Messages between objects

22

Indicating method calls
l  activation: thick box over object's life line;

drawn when object's method is on the stack
–  either that object is running its code,

or it is on the stack waiting for another object's
method to finish

–  nest activations to indicate self call or recursion

Activation

Nesting

23

Lifetime of objects

24 Note: older create and delete message notations are used here

Selection and loops

25

26

Exercise

Synchronous message
Asynchronous message
Return message 27

Why not just code it?
Sequence diagrams can be close to the code level. So why not
just code up that algorithm rather than drawing it as a sequence
diagram?

–  a good sequence diagram is still a bit above the level of
the real code (not all code is drawn on diagram)

–  sequence diagrams are language-agnostic
–  non-coders can do sequence diagrams
–  easier to do sequence diagrams as a team
–  can see many objects/classes at a time on same page

(visual bandwidth)

The goal of UML is communication and understanding
 28

Sequence diagram exercise
l  Write a sequence diagram for the following

poker casual use case, Start New Game Round

29

The scenario begins when the player chooses to start a new
round in the UI. The UI asks whether any new players want to
join the round; if so, the new players are added using the UI.

All players' hands are emptied into the deck, which is then
shuffled. The player left of the dealer supplies an ante bet of the
proper amount. Next each player is dealt a hand of two cards
from the deck in a round-robin fashion; one card to each player,
then the second card.

If the player left of the dealer doesn't have enough money to
ante, he/she is removed from the game, and the next player
supplies the ante. If that player also cannot afford the ante, this
cycle continues until such a player is found or all players are
removed.

Poker sequence diagram

30

